Thyroid disorders in the elderly

K. Poppe Endocrinologie

UNIVERSITÉ ULB LIBRE DE BRUXELLES

Physiology

Subclinical hypothyroidism (TSH [↑])

Subclinical Hyperthyroidism (TSH ↓)

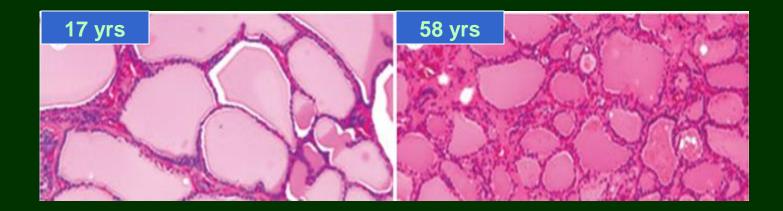
Physiology Thyroid and Aging or the Aging Thyroid?

Thyroid dysfunction in the elderly

Kristien Boelaert Nat. Rev. Endocrinol. 9, 194–204 (2013)

Thyroid Hormone Signaling and Homeostasis During Aging (Endocrine Reviews 34: 556–589, 2013)

J. Bowers,* J. Terrien,* M. S. Clerget-Froidevaux, J. D. Gothié, M. P. Rozing, R. G. J. Westendorp, D. van Heemst, and B. A. Demeneix


Age-induced changes to thyroid

- Anatomical
 nodularity
- HP Thyroid- axis

 thyroid function (TH)
 thyroid autoimmunity (TAI)

Anatomical changes

• A general trend is thyroid gland atrophy; characterized by a reduction in weight and size of follicles, a decrease in colloid content, and subtle degree of diffuse fibrous interstitial expansion (Figure 1).

... by contrast, several other studies have identified an increase in thyroid size and weight as well as higher incidences of nodular disease with advancing age.

Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination

S. Guth, U. Theune, J. Aberle, A. Galach and C. M. Bamberger

Medical Prevention Center Hamburg at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Eur J Clin Invest 2009; 39 (8): 699–706

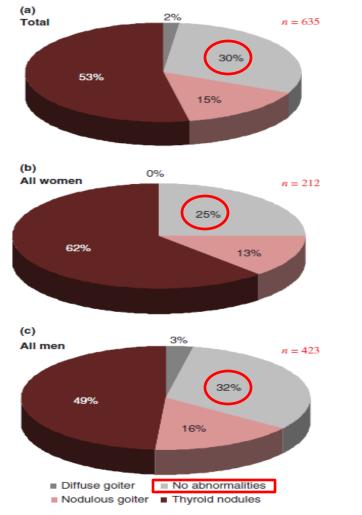
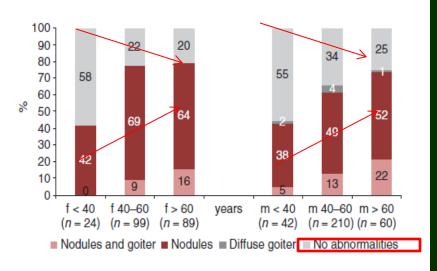



Figure 1 No abnormalities, diffuse goiter, nodulous goiter and non-goiter thyroid nodules in total and gender specific.

	Study population (<i>n</i>)	Minimum age (years)	Maximum age (years)	Medium age (years)
Female	212 (33%)	19	86	56·6 ± 11·8
Male	423 (67%)	27	93	56·8 ± 12·0
Total	635 (100%)	19	93	56·7 ± 11·9

Figure 2 Prevalence of goiter, thyroid nodules and healthy thyroids in women and men of different age groups.

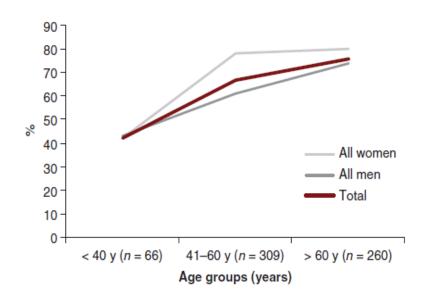


Figure 3 Increasing occurrence of thyroid nodules with age by gender and in total.

HPT axis changes

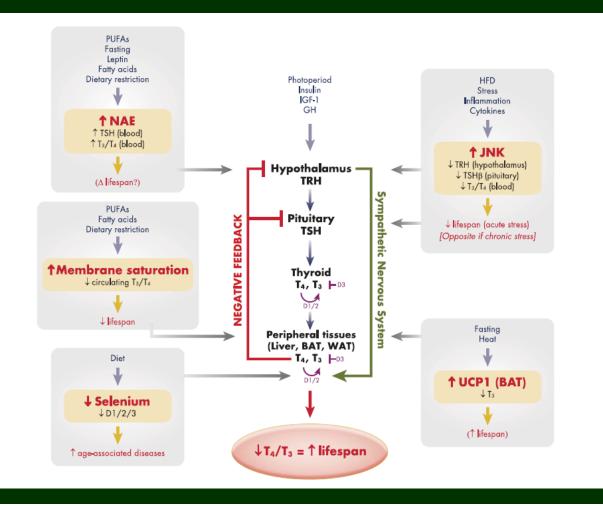


Figure 6. Schematic representation of integrated, age-related influences in the HPT axis activity. Stimulation of the hypothalamus results in TRH release, which increases TSH release from the pituitary. TSH acts to increase TH production and secretion from the thyroid gland. Hypothalamus results in TRH acts can also directly influence peripheral tissues via the SNS. Low circulating TH levels are associated with longer life span. THs are secreted into the circulation, and they enter target tissues such as liver, BAT, and white adipose tissue (WAT), where they are locally activated by deiodinase D3. Deiodinases can also directly influence of aging associated with longer life span. THs are secreted into and D2 and leactivated by deiodinase D3. Deiodinases contains selenium, higher levels of which are associated with decreased aging-associated direase provalence in adults. The influence of aging on the HPT axis monoprofund in peripheral tissues than in the hypothalamus. Metaologi affects exceeded as the CCP activities as well as membrane saturation and then modulate the HPT axis in an integrative manner. The presence of NAC, and UCP1 activity, whereas JNK influences both the hypothalamus and the hypothalamus and the pratiery gland. Integration of photic and metabolic stimuli (such as insulin, GH/IGF-I) and their age-associated alterations occur at a central level and will therefore influence the functioning of the HPT axis.

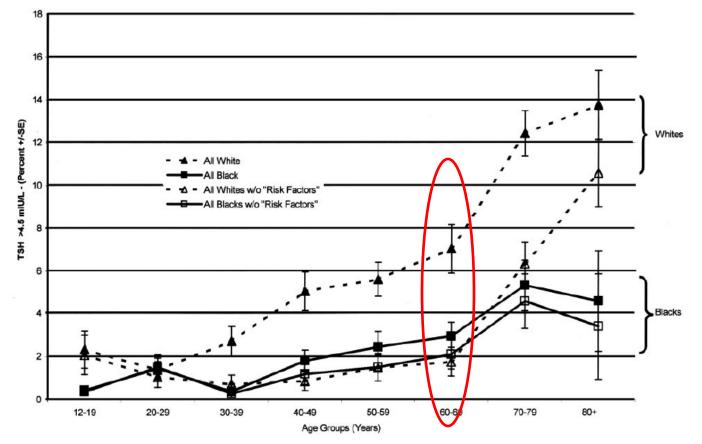
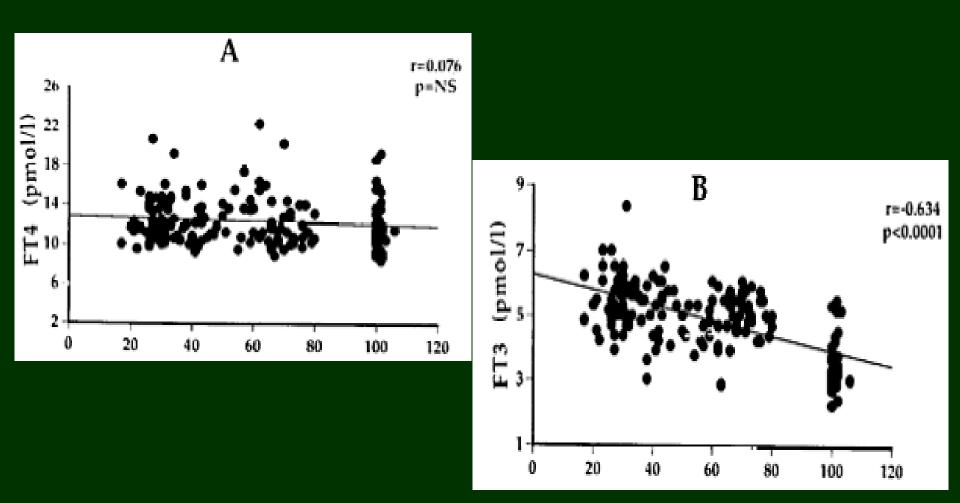
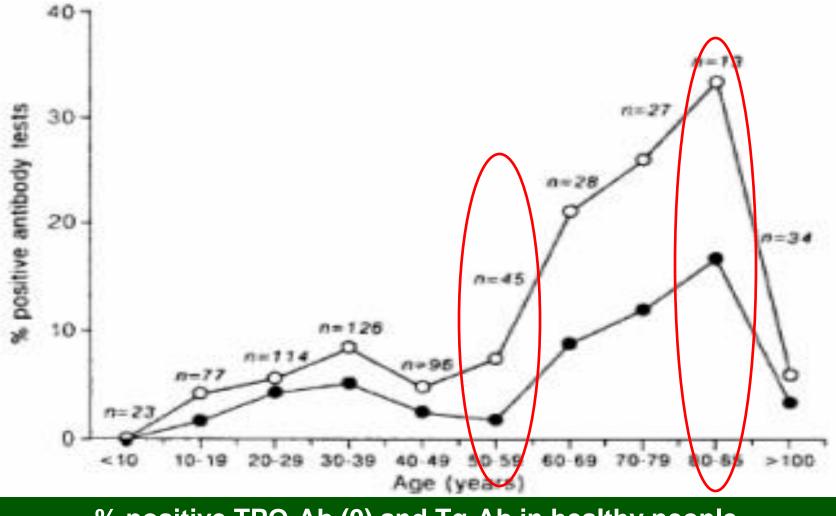



FIG. 4. Comparison of the effect of risk factors on high serum TSH (>4.5 mIU/liter) in blacks and whites. When comparing high TSH concentration in the disease-free population (excludes those people who have reported having thyroid disease, goiter, or taking thyroid medications) with the reference population (excludes those people who reported having thyroid disease, goiter, or taking thyroid medications and who do not have risk factors that include pregnancy, taking estrogen, androgens, or lithium, and are without the presence of thyroid antibodies or biochemical evidence of hypothyroidism or hyperthyroidism), the significant effect of risk factors in whites is not seen in blacks. In the reference population, the prevalence of high TSH in whites does not increase until age 70 yr.


Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). Hollowell JG et al. JCEM 2002 87:489-99.

FT4 (and TT4) levels remain constant

Age related decline in T3 levels (ill people excluded) Mariotti et al. JCEM 1993

Thyroid autoimmunity (TAI)

% positive TPO-Ab (0) and Tg-Ab in healthy people

Mariotti et al. Lancet 1992

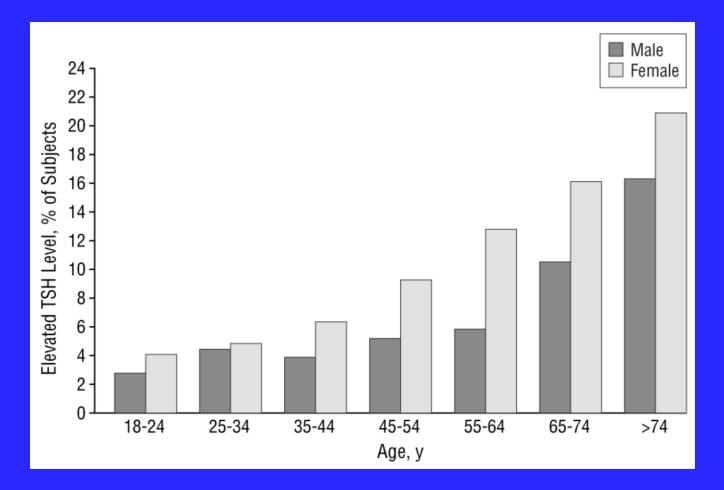
Subclinical hypothyroidism (TSH 1)

Subclinical Hyperthyroidism (TSH ↓)

MORBIDITY

- General symptoms
- Lipids
- Atherosclerosis, Cardio Vascular aspects
- Cognitive aspects
- Frailty / Bone
- MORTALITY

White slide =



Definition
 Causes / Prevalence

Subclinical hypothyroidism (SCH)

High serum TSH (above the upper limit of the assay) & Normal FT4

Prevalence

The Colorado Thyroid Disease Prevalence Study Arch Intern Med. 2000

Causes of SCH

Table 2 Causes of SHypo and raised TSH levels				
Causes	Details			
Autoimmune hypothyroidism	Usually associated with positive thyroid autoantibodies and/or hypoechogenic appearance on ultrasound			
Previously treated thyroid or neck disease	History of radioiodine or surgical treatment			
Drugs	Lithium, amiodarone, anticonvulsants (due to increased T4 metabolism), interferon, sunitinib			
Inadequate treatment of thyroid disease	Non-compliance, undertreatment with thyroid hormones, malabsorption, interaction with other substances (iron, calcium); overtreatment with antithyroid drugs			
Transiently raised TSH levels	Non-thyroidal illness (recovery phase)			
Systemic diseases with thyroid involvement	Sarcoidosis, amyloidosis, lymphoproliferative disorders, haemochromatosis			
TSH receptor gene mutations	Several loss of function gene mutations have been found in non-autoimmune SHypo			
Pituitary tumours secreting low bioactivity TSH				

Table 2 Causes of SHypo and raised TSH levels

SHypo, subclinical hyperthyroidism; TSH, thyroid stimulating hormone; T4, thyroxine.

Spontaneous evolution of SCH

In a study of 422,242 persons with SCH (5.5 to ≤10 mU/L), during 5 years FU, TSH **became normal in 62 % of patients.**

- normalization of serum TSH is more likely to occur in patients

*without TAI / *TSH <10 mU/I / *within the first 2 years after diagnosis

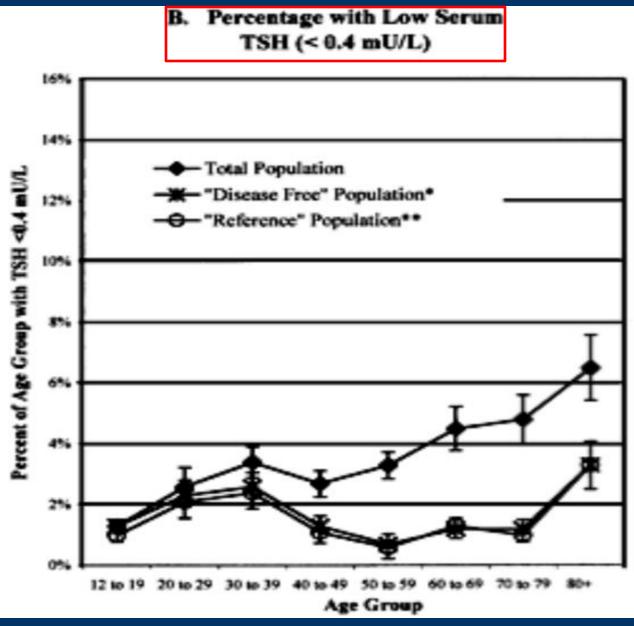
20 years FU study of the Wickham survey, evolution to **overt hypothyroidism**

4% / year in women with raised TSH and thyroid antibodies
3% / year if only TSH is raised
2% / year if only thyroid antibodies

Spontaneous normalization of thyrotropin concentrations in patients with subclinical hypothyroidism. Díez JJ, et al. JCEM 2005

Vanderpump et al., Clin Endocrinol, 1995

Subclinical Hyperthyroidism (sch)


Low serum TSH & Normal FT4 and FT3

Degrees of (s)hyperthyroidism

	Overt hyperthyroidism	T3 thyrotoxicosis	Grade II subclinical hyperthyroidism	Grade I subclinical hyperthyroidism
TSH	<0.1 mU/l	<0.1 mU/l	<0.1 mU/l	0.1-0.4 mU/l
FT4	Hi	Normal	Normal	Normal
FT3	Hi	Hi	Normal	Normal

Prevalence

NHANES III

Serum thyrotropin measurement in the community

- 422242 patients included
- No history or treatment for thyroid disorders
- 95 % normal TSH (0.35-5.5 mU/l)
- 1.2% decreased TSH (< 0.35 mU/l)
- 3 % were elevated TSH (> 5.5-10 mU/L)
- 0.7 % were highly elevated TSH (> 10 mu/l)

Serum thyrotropin measurements in the community: five-year follow-up in a large network of primary care physicians. Meyerovitch J et al. Arch Intern Med. 2007

Thyrotoxicosis with hyperthyroidism (normal or high radioactive iodine uptake)

Effect of increased thyroid stimulators	
TSH-receptor antibody	Graves' disease
Inappropriate TSH secretion	TSH-secreting pituitary adenoma; pituitary resistance to thyroid hormone
Excess hCG secretion	Trophoblastic tumours (choriocarcinoma or hydatidiform mole); hyperemesis gravidarum
Autonomous thyroid function	
Activating mutations in TSH receptor or G₅α protein	Solitary hyperfunctioning adenoma; multinodular goitre; familial non-autoimmune hyperthyroidism
Thyrotoxicosis without hyperthyroidism (low ra	dioactive iodine uptake)
Inflammation and release of stored hormone	
Autoimmune destruction of thyroid gland	Silent (painless) thyroiditis; post-partum thyroiditis
Viral infection*	Subacute (painful) thyroiditis (De Quervain thyroiditis)
Toxic drug effects	Drug-induced thyroiditis (amiodarone, lithium, interferon α)
Bacterial or fungal infection	Acute suppurative thyroiditis
Radiation	Radiation thyroiditis
Extrathyroidal source of hormone	
Excess intake of thyroid hormone	Excess exogenous thyroid hormone (iatrogenic or factitious)
Ectopic hyperthyroidism (thyroid hormone produced outside the thyroid gland)	Struma ovarii; functional thyroid cancer metastases
Ingestion of contaminated food	Hamburger thyrotoxicosis ¹
Exposure to excessive iodine	
Jod-Basedow effect	Iodine-induced hyperthyroidism (iodine, iodine-containing drugs, radiographic contrast agents)

TSH=thyroid-stimulating hormone. hCG=human chorionic gonadotropin. $G_{s}\alpha$ =G protein alpha subunit. *Aetiology is not definitive.

Aetiology	N	Sex (F/M)	Age† (years)	BMI† kg/m²	Smoking Habit Current Smoker (%) /Previous or none smoker (%)	Clinical Signs, % (n)	Screening, % (<i>n</i>)
Graves' disease	802	81%/19%	43 ± 14	23 ± 4	23/77	91 (732)	9 (69)
1st episode							
Graves' disease	350	89%/11%	44 ± 15	24 ± 4	22/78	83 (292)	15 (54)
recurrence							
Multinodular goitre	121	83%/17%	64 ± 16	26 ± 5	15/85	62 (75)	36 (44)
Toxic adenoma	69	78%/22%	59 ± 14	25 ± 5	12/88	64 (44)	36 (25)
Iatrogenic causes*	112	28%/72%	67 ± 13	26 ± 5	3/97	47 (53)	52 (58)
Sub-acute thyroiditis	40	88%/12%	43 ± 14	23 ± 4	21/79	83 (33)	17 (7)
Others	52	67%/33%	58 ± 19	25 ± 5	2/98	81 (42)	19 (10)

Table 1. Clinical characteristics of the patients with hyperthyroid according to the different aetiologies

*(amiodarone, interferon) †mean \pm SEM.

B. Goichot et al. Clinical presentation of hyperthyroidism in a large representative sample of outpatients in France: relationships with age, aetiology and hormonal parameters. Clin Endo 2016

Thyrotoxicosis with hyperthyroidism (normal or high radioactive iodine uptake)

Effect of increased thyroid stimulators	
TSH-receptor antibody	Graves' disease
Inappropriate TSH secretion	TSH-secreting pituitary adenoma; pituitary resistance to thyroid hormone
Excess hCG secretion	Trophoblastic tumours (choriocarcinoma or hydatidiform mole); hyperemesis gravidarum
Autonomous thyroid function	
Activating mutations in TSH receptor or G₅α protein	Solitary hyperfunctioning adenoma; multinodular goitre; familial non-autoimmune hyperthyroidism
Thyrotoxicosis without hyperthyroidism (low r	adioactive iodine uptake)

Inflammation and release of stored hormone

Autoimmune destruction of thyroid gland

Viral infection*

Toxic drug effects

Bacterial or fungal infection Radiation

Extrathyroidal source of hormone

Excess intake of thyroid hormone

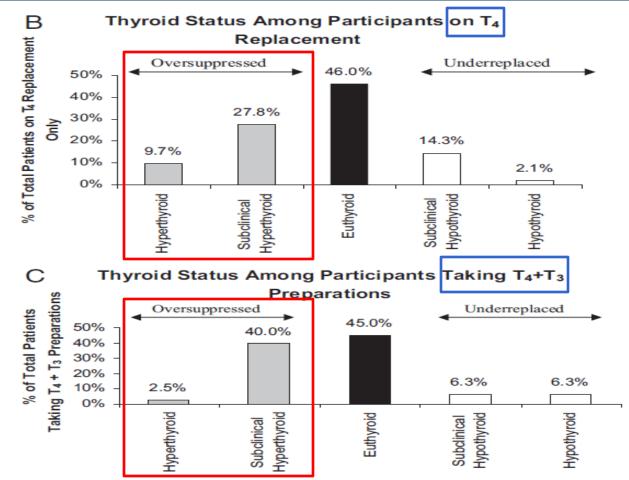
Ectopic hyperthyroidism (thyroid ho produced outside the thyroid gland) Ingestion of contaminated food Exposure to excessive iodine

Jod-Basedow effect

Silent (painless) thyroiditis; post-partum thyroiditis Subacute (painful) thyroiditis (De Quervain thyroiditis) Drug-induced thyroiditis (amiodarone, lithium, interferon α)

Exogenous sch is more frequent than the endogenous variant.

Of those taking levothyroxine, **20–40%** have a low serum TSH concentration.


Iodine-induced hyperthyroidism (iodine, iodine-containing drugs, radiographic contrast agents)

TSH=thyroid-stimulating hormone. hCG=human chorionic gonadotropin. $G_{\alpha}=G$ protein alpha subunit. *Aetiology is not definitive.

High Frequency of and Factors Associated with Thyroid Hormone Over-Replacement and Under-Replacement in Men and Women Aged 65 and Over JCEM 94: 1342–1345, 2009

Lily L. Somwaru, Alice M. Arnold, Neha Joshi, Linda P. Fried, and Anne R. Cappola

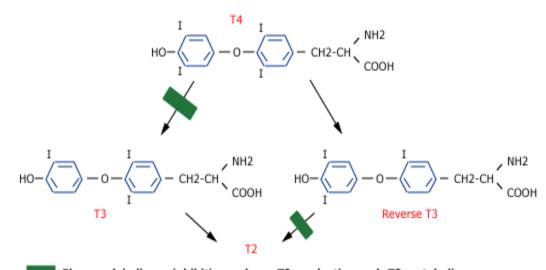
FIG. 1. Thyroid function tests among participants taking all types of thyroid hormone preparations (A), only T_4 preparations (B), and only T_4 plus T_3 preparations (C).

1/ Confounding conditions

2/ Confounding factors

Drugs causing abnormal thyroid function tests without thyroid dysfunction

Low serum TBG - androgens, danazol, glucocorticoids, slow-release niacin (nicotinic acid), l-asparaginase


High serum TBG - estrogens, tamoxifen, raloxifene, methadone, 5-fluouracil, clofibrate, heroin, mitotane

Decreased T4 binding to TBG - salicylates, salsalate, furosemide, heparin (via free fatty acids), certain NSAIDs

Increased T4 clearance - phenytoin, carbamazepine, rifampin, phenobarbital

Suppression of TSH secretion - dobutamine, glucocorticoids, octreotide

T4 metabolism in nonthyroidal illness

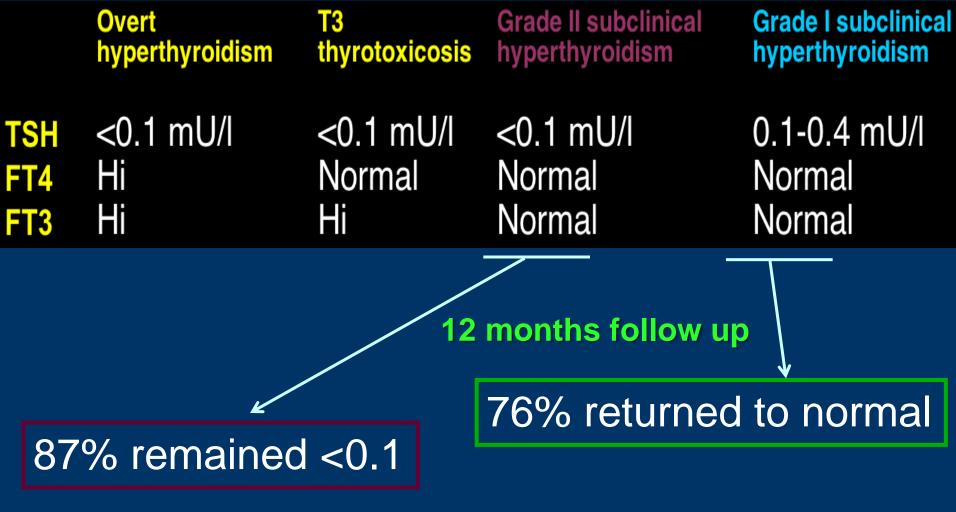
5'-monodeiodinase inhibition reduces T3 production and rT3 metabolism

The inhibition of 5'- monodeiodinase in nonthyroidal illness leads to decreased conversion of T4 to T3 and reduced metabolism of rT3.

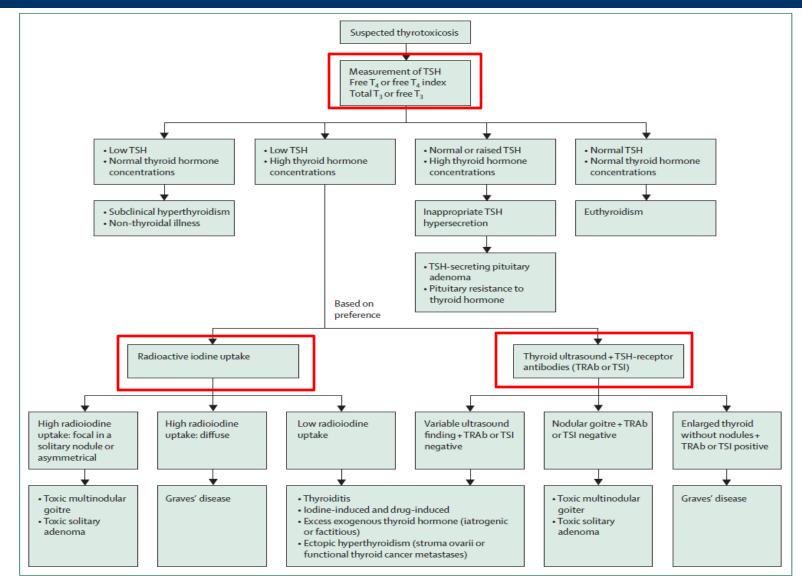
rT3: reverse triiodothyronine; T2: diiodothyronine; T3: triiodothyronine; T4: thyroxine.

NTI

↑ cytokines


- » IL-1, IL-6, TNF- α
- » inhibiting 5'-D activity
- » !! also an age-related increase in cytokines
- nutrition status
 - starvation / low proteins, Se
 - high corbohydrates, low leptine, low TRH

$\textbf{Table 1} \mid \textbf{Diagnostic tests of nonthyroidal illness vs subclinical hyperthyroidism}$				
Laboratory tests	Nonthyroidal illness*	Subclinical hyperthyroidism [‡]		
TSH	Normal or low or undetectable	Undetectable or low		
Total T_4	Normal or low	Normal to high normal		
Free T_4	Normal or low	Normal to high normal		
Total $T_{_3}$	Low	Normal to high normal		
Free $T_{_3}$	Low	Normal to high normal		
Reverse T_3	High	Normal		


« Try » <u>NOT</u> to determine thyroid function tests during a period of ilness, fever, corticoid treatment ...

Evolution of SCH to HT

Parle JV et al. 1991 Clin Endo

Work-up

Figure 2: Algorithm for the assessment of thyrotoxicosis

T₃=tri-iodothyronine. T₄=thyroxine. TRAb=TSH-receptor antibodies. TSH=thyroid-stimulating hormone. TRAb=TSH-receptor antibodies. TSI=thyroid-stimulating immunoqlobulins.

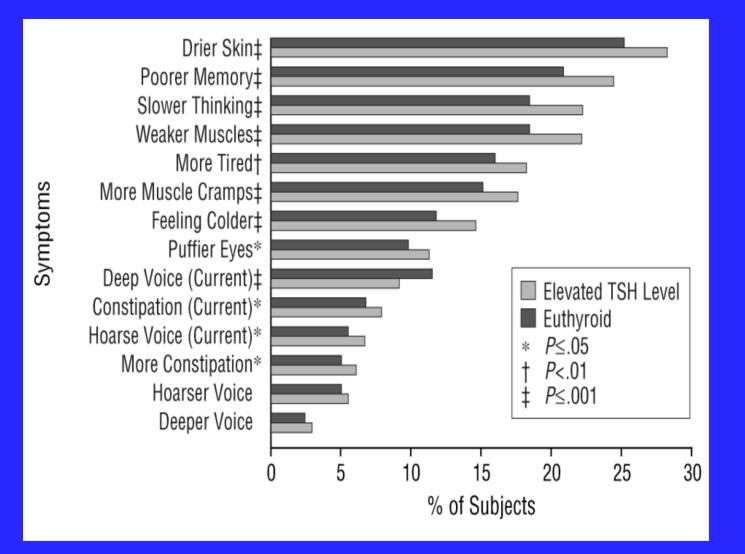
SCH = high serum TSH (above reference range) and normal FT4

sch = low serum TSH (under reference range/ suppressed) with normal FT4 and FT3

Think about the degrees of sch!

Don't measure TT in sick patients

Check sligthly high/low TSH levels 2-3 months later, before starting a treatment

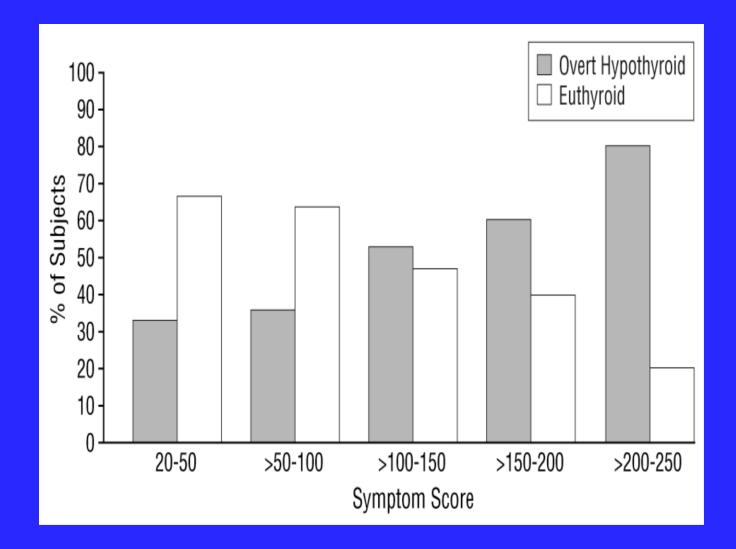

Think about interfering medications ≠ thyroid disease

Associations / Treatment evidence

MORBIDITY

- General symptoms
- Lipids
- Atherosclerosis, Cardio Vascular aspects
- Cognitive aspects
- Frailty / Bone
- MORTALITY

General symptoms



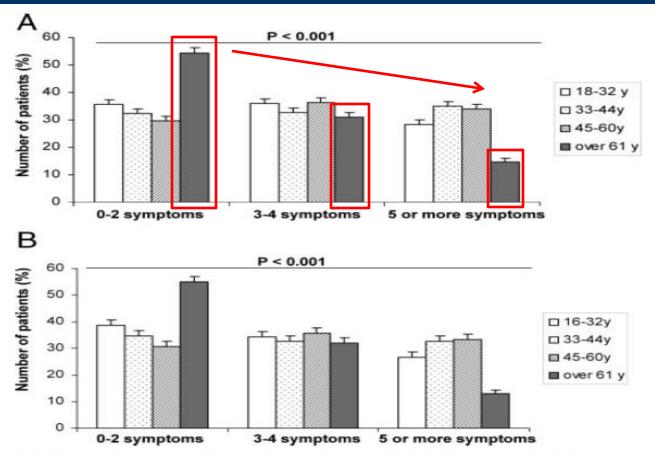

Ravzi et al. J Clin Pathol 2010

Table 6. Individual Symptoms *

Symptom	Sensitivity, %	Specificity, %
Current symptoms		
Hoarse voice	6.7	94.5
Deep voice	9.2	88.5
Constipation	7.9	93.1
Changed symptoms		
Hoarser voice	5.5	95.0
Deeper voice	2.9	97.6
Drier skin	28.3	74.7
Feeling colder	14.6	88.2
More tired	18.3	84.0
Puffier eyes	11.3	90.2
More muscle cramps	17.6	84.9
Weaker muscles	22.2	81.5
More constipation	6.1	95.0
Slower thinking	22.3	81.5
Poorer memory	24.5	79.1

* Total population, elevated thyrotopin level vs euthyroid.

FIG. 1. A, Number of symptoms of hyperthyroidism reported by patients in the respective age groups, indicating that the majority of patients aged older than 61 yr reported a maximum of two symptoms. The lowest proportion of patients reporting five or more symptoms was found in patients older than 61 yr. B, Number of symptoms of hyperthyroidism reported by patients after exclusion of those taking β -blockers or amiodarone.

Boelaert, K., et al. Older individuals with hyperthyroidism present with a paucity of symptoms and signs: a large cross-sectional study. JCEM 2010.

ORIGINAL ARTICLE

Clinical presentation of hyperthyroidism in a large representative sample of outpatients in France: relationships with age, aetiology and hormonal parameters

B. Goichot*'t, Ph. Caron‡, F. Landron§ and S Bouée¶

	<65 years old	≥65 years old	P-value
	1301	269	
Palpitations	965 (76.0%)	135 (54.4%)	<0.0001
Asthenia	949 (74.7%)	170 (68.5%)	0.0433
Gastrointestinal signs	351 (27.6%)	52 (21.0%)	0.0296
Heat intolerance. polydypsia. excess sweating	692 (54.5%)	74 (29.8%)	<0.0001
Sleep disturbance	543 (42.8%)	70 (28.2%)	<0.0001
Other symptoms	471 (37.1%)	78 (31.5%)	0.0912
Cardiac dysrhythmias. atrial fibrillation or others	134 (11.8%)	77 (33.9%)	<0.0001
Weight loss %	734 (64.6%)	151 (66.5%)	0.5714
Weight loss in kg (standard deviation)	5.9 (4.2)	6.3 (4.2)	0.1932
Tachycardia	780 (68.6%)	100 (44.1%)	<0.0001
Beats/minute	102.1 (14.9)	99.4 (17.8)	0.0366
Visible goitre	437 (38.4%)	35 (15.4%)	<0.0001
Other physical signs	135 (11.9%)	28 (12.3%)	0.8449

CLINICAL STUDY

Cognitive functioning and well-being in euthyroid patients on thyroxine replacement therapy for primary hypothyroidism

Ellie M Wekking, Bente C Appelhof¹, Eric Fliers¹, Aart H Schene, Jochanan Huyser, Jan G P Tijssen² and Wilmar M Wiersinga¹

Department of Psychiatry, ¹Department of Endocrinology and Metabolism, and ²Department of Cardiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands

Abstract

Objective: Hypothyroidism is associated with neurocog.nitive impairment. Sparse data suggest that treatment of hypothyroidism, resulting in a return to euthyroidism, may be associated with only partial recovery of overall neurocognitive functioning. The aim of this study was to assess neurocognitive functioning and well-being in euthyroid patients with primary hypothyroidism on adequate thyroxine (T4) treatment. We also investigated whether serum TSH and thyroid antibodies are determinants of neurocognitive functioning and well-being.

Design: We assessed neurocognitive functioning and well-being in 141 patients with primary hypothyroidism.

Methods: Neurocognitive test results and scores on questionnaires measuring well-being of 141 patients were compared with the reference values for these tests as published and used in Dutch clinical neuropsychological practice. Assessment of neurocognitive functioning included tests for cognitive or psychomotor speed, attention, working memory as well as learning and memory. Well-being was measured with the Symptom Check List-90 total score and the Rand 36-item Health Survey subscales for 'mental health' and 'vitality'.

Results: Patients showed poor performance on various domains of neurocognitive functioning compared with mean standard reference values, especially on a complex attention task and on verbal memory tests. Levels of well-being were significantly lower for patients compared with those of the general population. Neither serum TSH nor thyroid antibodies were determinants of neurocognitive functioning and well-being.

Conclusion: The results of this study suggest that neurocognitive functioning as well as psychological well-being may not be completely restored in patients with hypothyroidism, despite T4 treatment.

Neuropsychological Function and Symptoms in Subjects with Subclinical Hypothyroidism and the Effect of Thyroxine Treatment *(mean age 60 years)*

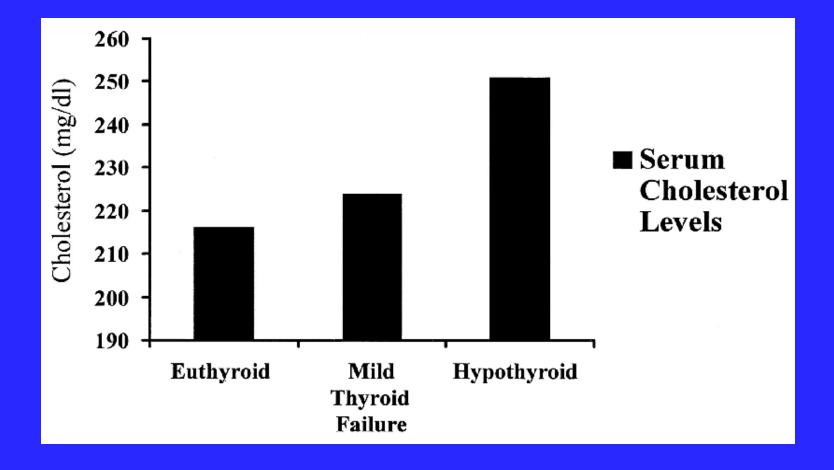
Rolf Jorde, Knut Waterloo, Hilde Storhaug, Audhild Nyrnes, Johan Sundsfjord, and Trond Geir Jenssen

Institute of Clinical Medicine (R.J., K.W.), University of Tromsø, 9037 Tromsø, Norway; Departments of Internal Medicine (H.S., A.N.) and Clinical Chemistry (J.S.), University Hospital of North Norway, 9038 Tromsø, Norway; and Department of Nephrology (T.G.J.), National Hospital, 0027 Oslo, Norway

Conclusion:

In subjects with SHT (TSH in the 3.5–10.0 mIU/L range), there is no neuropsychological dysfunction, compared with healthy controls

! T4 substitution had no effect on any of the parameters measured



Symptoms are less frequent in older patients and not-sensitive for thyroid dysfunction

• Lipids

Colorado survey: statistically higher total and LDL cholesterol in subjects with mild thyroid failure vs. euthyroid subjects (TC 224 mg/dl, vs.216 mg/dl)

Canaris et al., 2000 Arch Intern Med 160(4):526-34

Table 3. Mean Lipid Levels by Disease State*

Disease State	Total Cholesterol,† mmol/L (mg/dL)	LDL Cholesterol,† mmol/L (mg/dL)	HDL Cholesterol, mmol/L (mg/dL)	, Triglycerides,‡ mmol/L (mg/dL)
Hypothyroid Subclinical hypothyroid	6.5 (251) 5.8 (224)	4.4 (170) 3.8 (146)	1.4 (53) 1.4 (53)	2.0 (180) 1.8 (156)
Euthyroid Subclinical hyperthyroid	5.6 (216) 5.4 (210)	3.6 (140) 3.4 (131)	1.3 (51) 1.5 (56)	1.7 (147) 1.6 (141)
Hyperthyroid	5.2 (202)	3.4 (130) 🗸	1.3 (50)	1.6 (140)

*LDL indicates low-density lipoprotein; HDL, high-density lipoprotein. †Trend analysis, P<.001. ‡Trend analysis, P = .02.

The Colorado Thyroid Disease Prevalence Study Arch Intern Med. 2000

Treatment evidence

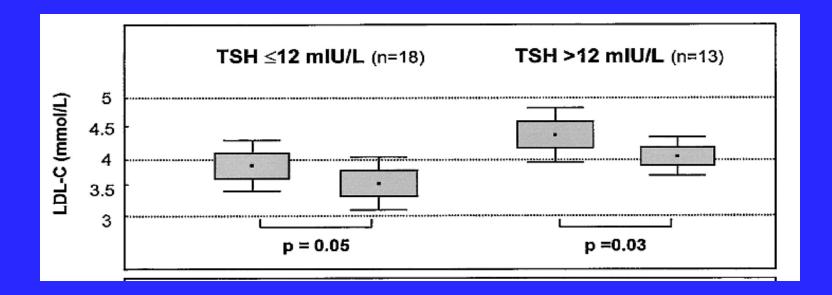


Figure 3. Effect of L-thyroxine treatment on serum LDL-C in subsets of patients in relation to TSH and LDL-C levels at baseline (*points*, mean; *boxes*, ± 1.00 SE; *bars*, ± 1.96 SE).

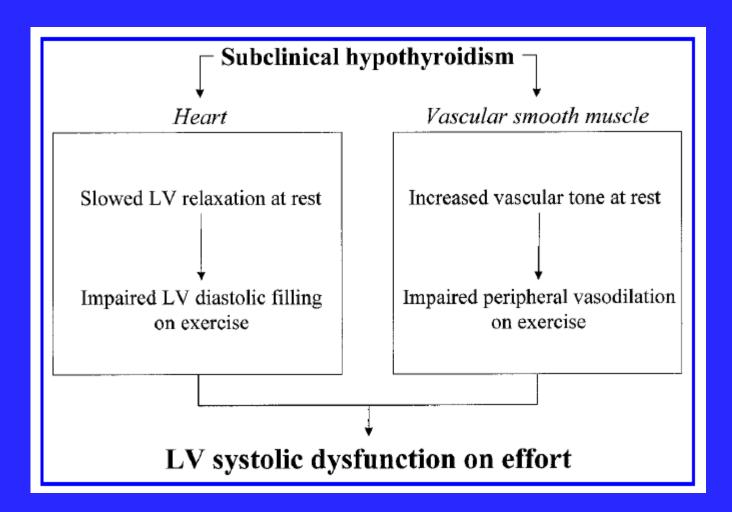
Meier et al. 2001

Atherosclerosis

CV system

PRECLINICAL HYPOTHYROIDISM: A RISK FACTOR FOR CORONARY HEART-DISEASE*

P. A. BASTENIE L. VANHAELST M. BONNYNS P. NEVE


M. STAQUET

Department of Medicine, Hôpital Universitaire Saint-Pierre, Brussels, Belgium

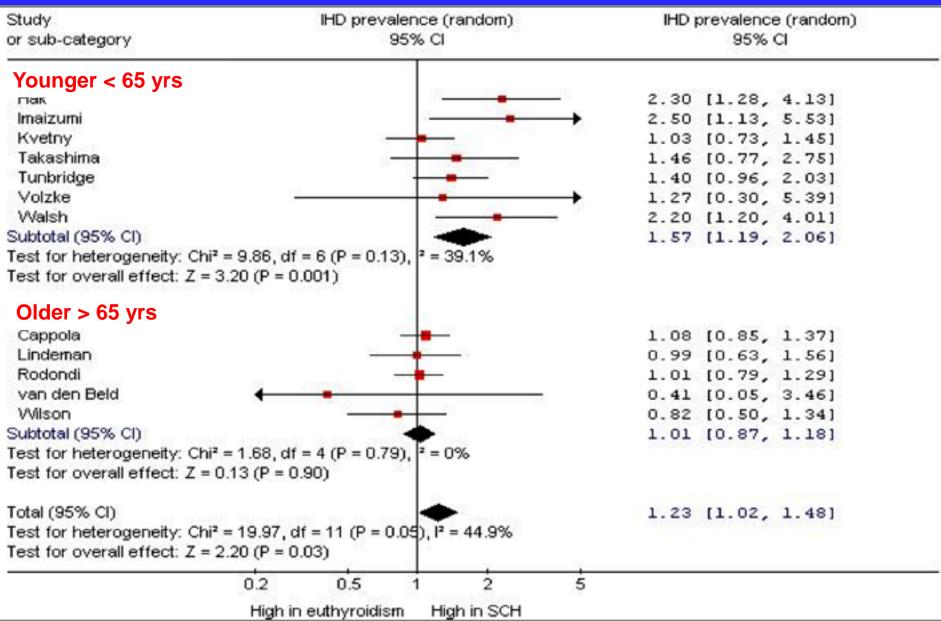
Lancet 1971; I: 203

Subclinical Hypothyroidism and Cardiac Function

Bernadette Biondi,¹ Emiliano A. Palmieri,² Gaetano Lombardi,¹ and Serafino Fazio²

Functional cardiac effects of SHyper

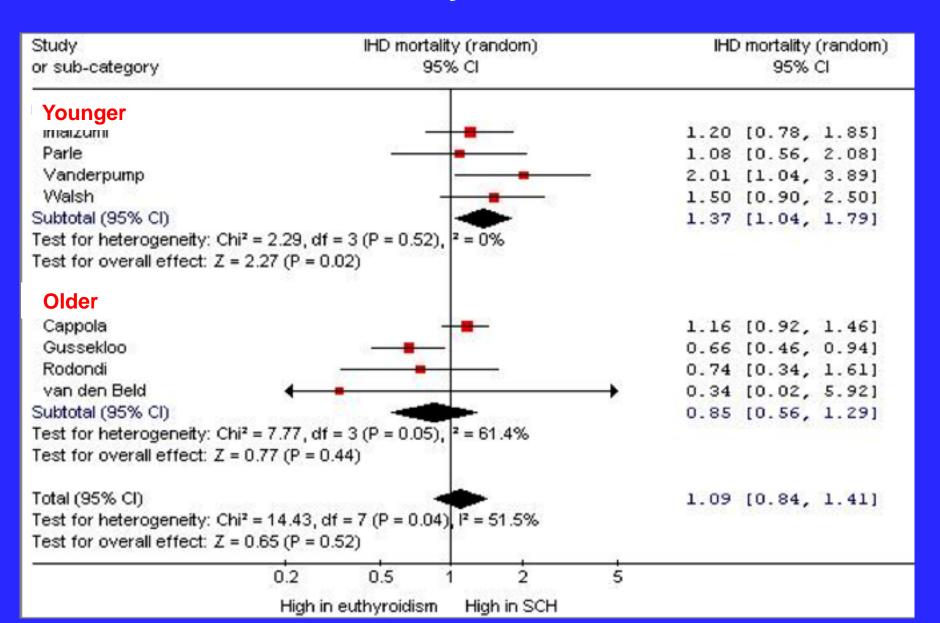
- Resting tachycardia
- LV hypertrophy
- Increase LV mass index
- Increase cardiac workload
- Diastolic dysfunction (impaired relaxation)
- Increased systolic function at rest
- Impaired systolic response to excercise


Biondi, Kahaly, Klein and others

The Influence of Age on the Relationship between Subclinical Hypothyroidism and Ischemic Heart Disease: A Metaanalysis JCEM 2008

Salman Razvi, Abdul Shakoor, Mark Vanderpump, Jolanta U. Weaver, and Simon H. S. Pearce

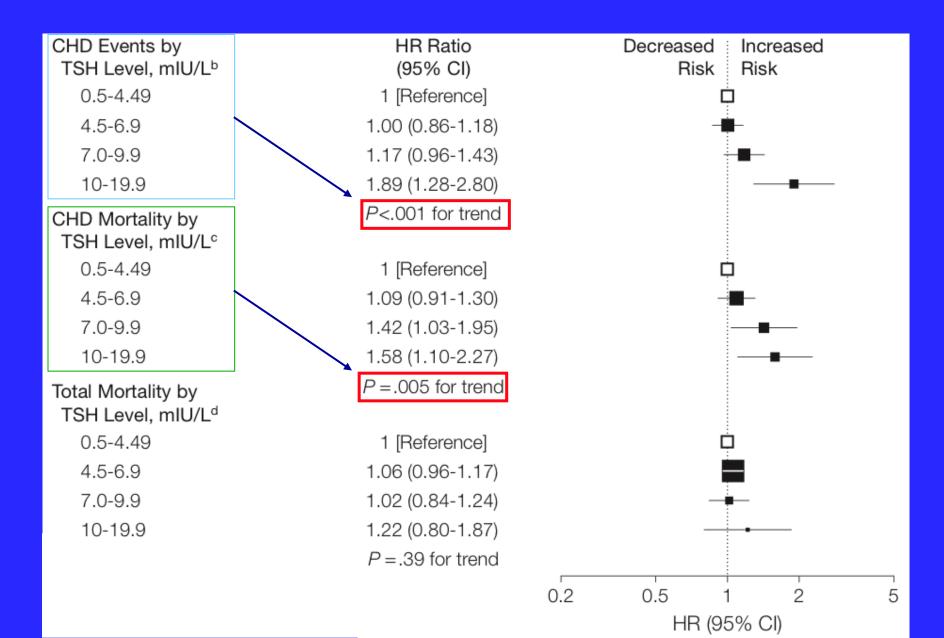
- Longitudinal or cross sectional studies of independent community-based subjects
- 14 studies fitted stringent criteria
- 2,531 SCH / 26,491 euthyroid individuals
- Divided studies according to age of inclusion
 - <65 yr vs 65 and above: median 60 & 74 yr</p>


IHD prevalence in <u>cross-sectional studies</u> of SCH & euthyroid controls

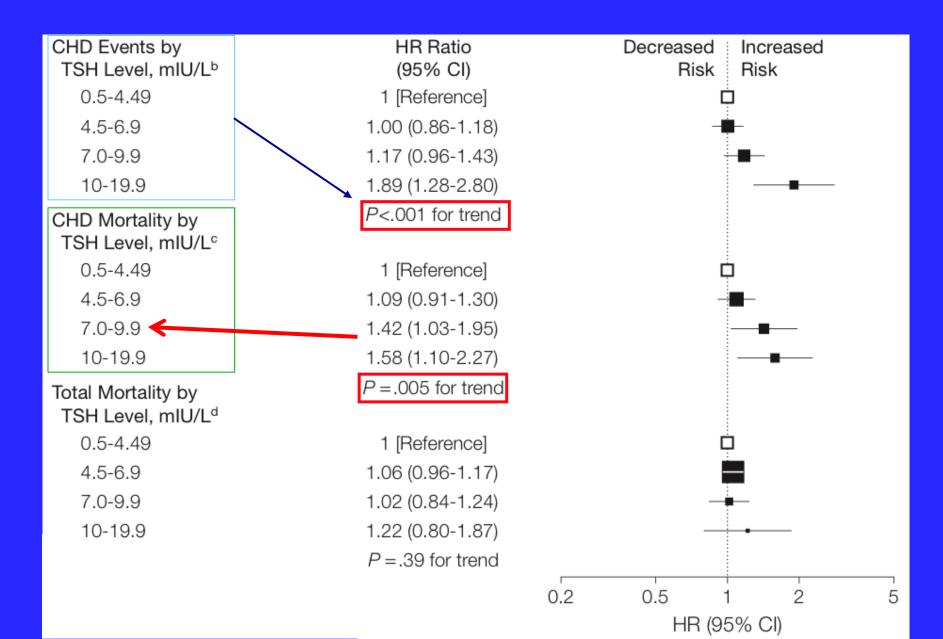
IHD incidence in <u>longitudinal studies</u> of SCH & euthyroid controls

Study	Incident IHD (random)	Incident IHD (random)
or sub-category	95% CI	95% CI
Younger		
Hak		♦ 2.50 [0.69, 9.01]
Vanderpump		1.51 [1.00, 2.28]
VValsh		1.80 [1.20, 2.69]
Subtotal (95% Cl)		1.68 [1.27, 2.23]
Test for heterogeneity: Chi2 =	0.73, df = 2 (P = 0.69), ² = 0%	
Test for overall effect: Z = 3.6	63 (P = 0.0003)	
Older		
Cappola		1.07 [0.90, 1.27]
Rodondi		0.85 [0.58, 1.25]
Subtotal (95% CI)	•	1.02 [0.85, 1.22]
Test for heterogeneity: Chi ² =	1.12, df = 1 (P = 0.29), 2 = 10.9%	and dealer with the second states
Test for overall effect: Z = 0.2	22 (P = 0.83)	
Total (95% Cl)		1.27 [0.95, 1.69]
5.54 ST 55.2 ST 10 2 HELE ST 2 ST 2 HELE TO A ST 2 ST	10.79, df = 4 (P = 0.03), I ² = 62.9%	
Test for overall effect: Z = 1.0		
4 <u>8</u>	0.2 0.5 1 2	5
	High in euthyroidism High in SCH	

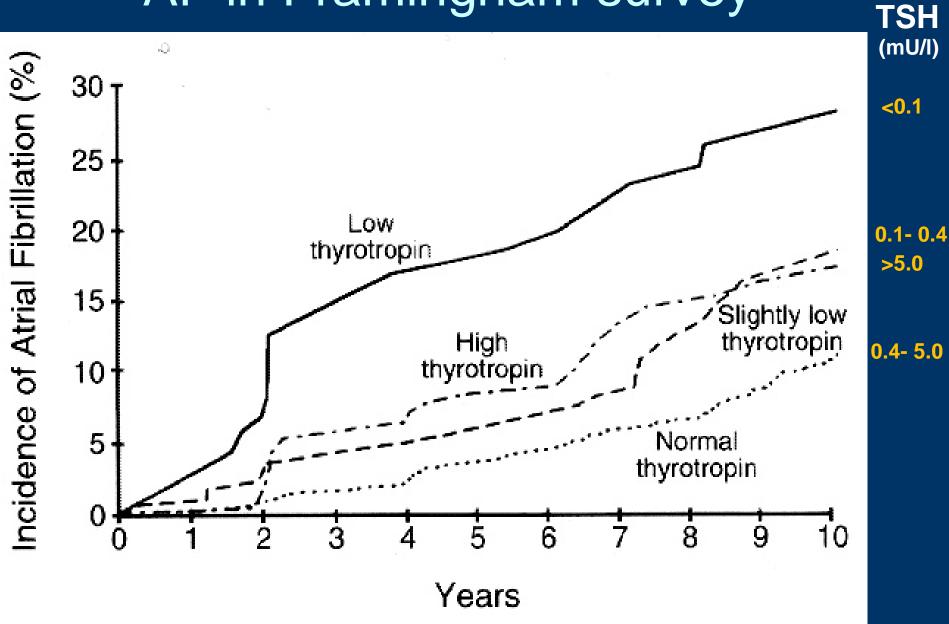
Cardiovascular mortality in <u>longitudinal studies</u> of SCH & euthyroid controls


Subclinical Hypothyroidism and the Risk of Coronary Heart Disease and Mortality JAMA 2010

Dr. Nicolas Rodondi, MD, MAS, Ms. Wendy P. J. den Elzen, MSc, Dr. Douglas C. Bauer, MD, Dr. Anne R. Cappola, MD, ScM, Dr. Salman Razvi, MD, FRCP, Dr. John P. Walsh, MBBS, FRACP, PhD, Dr. Bjørn O. Åsvold, MD, PhD, Dr. Giorgio lervasi, MD, Dr. Misa Imaizumi, MD, PhD, Dr. Tinh-Hai Collet, MD, Dr. Alexandra Bremner, PhD, Mr. Patrick Maisonneuve, Ing, Dr. José A. Sgarbi, MD, Dr. Kay-Tee Khaw, MD, Dr. Mark P. J. Vanderpump, MD, FRCP, Dr. Anne B. Newman, MD, MPH, Dr. Jacques Cornuz, MD, MPH, Dr. Jayne A. Franklyn, MD, PhD, FRCP, Dr. Rudi G. J. Westendorp, MD, PhD, Dr. Eric Vittinghoff, PhD, and Dr. Jacobijn Gussekloo, MD, PhD for the Thyroid Studies Collaboration


- 55,287 participants; 3,450 with SCH (6.2%)
- Information derived from 11 studies
- 9664 deaths; 2168 from CHD
- SCH defined as TSH 4.5-19.99 mU/I (N FT4)

Patient-level analysis


Patient-level analysis: TSH

Patient-level analysis: TSH

AF in Framingham survey

Sawin et al. NEJM; 1994

Cardiovascular Health Study

Atrial Fibrillation 1.00 Subclinical Hyperthyroidism Euthyroidism Subclinical Hypothyroidism 0.80 Overt Hypothyroidism **Cumulative Incidence** 0.60 0.40 0.20 Follow-up, v No. at Risk Subclinical Hyperthyroidism Euthyroidism Subclinical Hypothyroidism Overt Hypothyroidism

3233 US community dwelling individuals over 65, mean age 73
AF rate 2.0 (CI 1.3-3.0) in SHyper Cappola et al. JAMA 2006

-No association SCH – CV in patients >70 years -Association in 60-70 patients especially when serum TSH >7 mIU/L

-Suppressed (>low) serum TSH is associated with and increased prevalence of AF and heart failure

-Lack of treatment evidence on the reversibility of low TSH ~ outcomes

Cognitive Aspects

The Rotterdam study Kalmijn et al. 2000 Clin Endo (Oxf)

Prospective population based cohort study 1843 participants aged 55 years and over follow up 2 to 4 years

Table 2 Relative risk (95% confidence interval) for incident dementia according to thyroid status, adjusted for age and gender *

	n/N†	Total dementia	<i>n/</i> N†	Alzheimer's disease
TSH > 4.0 mU/l	20/1730	0.5 (0.1-3.8)	15/1725	0.6 (0.1-4.6)
Excluding subjects taking beta blockers	20/1662	0.5 (0.1-3.7)	15/1642	0.6 (0.1-4.5)
TSH > 4.0 with positive antibodies§	14/1417	P-	10/1413	P—

SD, standard deviation.

* In all analyses thyromimetic or thyrostatic medication users are excluded; †Number of dementia patients and total number in the analyses; ‡One standard deviation = 23.3 nmol/l; §TPO-antibody level > 10 IU/ml; ¶ There were no demented subjects with increased TSH levels and positive antibodies.

Subclinical Hypothyroidism and Cognitive Impairment: Systematic Review and Meta-Analysis JCEM 2015

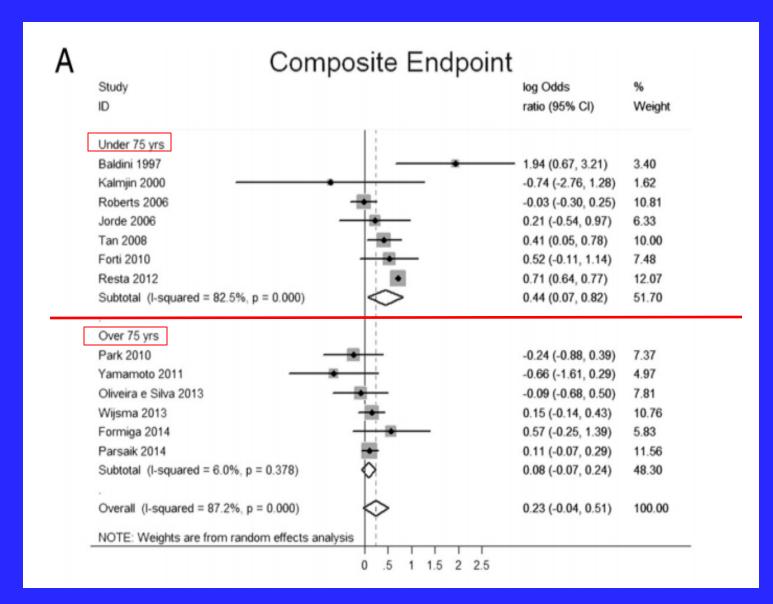

Giuseppe Pasqualetti, Gennaro Pagano, Giuseppe Rengo, Nicola Ferrara, and Fabio Monzani

Table 1. Study Characteristic and Quality Score (Newcastle-Ottawa Scale)

Study	Туре	sHT Definition	TSH Assay
Baldini et al (1997) (33)	Case control	TSH exceeding the upper normal limits by 20% (4.6 mU/liter) or more (in at least two consecutive occasions) associated with normal FT ₄ and FT ₃	IRMA Allegro HS-TSH, Nichols Institute Diagnostics, San Juan Capistrano, CA
Formiga et al (2014) (40) Jorde et al (2006) (15)	Cohort study Cohort study	TSH >5 mU/liter, FT_4 10–26 pmol/liter TSH 5–10 mU/liter, FT_4 9–22 pmol/liter in at least two consecutive occasions	MABs Roche Diagnostics Hoffman-La Roche
Park et al (2010) (17)	Cohort study	TSH >4.1 mU/liter, FT ₄ 0.7–1.8 ng/liter	TSH: CIS Bio International, Gif-sur-Yvette
Parsaik et al (2014) (32)	Cross-sectional	TSH 5–10 mU/liter, FT ₄ 1.01–1.79 ng/dl	TSH Mayo Clinic Protocol
Roberts et al (2006) (14) Wijsma et al (2013) (34)	Cohort study Cohort study	TSH >5.5 mU/liter, FT ₄ 9–20 pmol/liter TSH >4.5 mU/liter, FT ₄ 12–18 pmol/liter in at least two consecutive occasions	Adiva Centaur Bayer Diagnostic Roche Elecsys 2010
Yamamoto et al (2011) (35) Silva et al (2013) (36) Tan et al (2008) (12)	Cohort study Cross-sectional Cohort study	NA TSH 4–19.9 U/liter, FT ₄ 0.8–1.19 ng/dl TSH >1.8–2.1 mU/liter ^b	NA Immunolite 2000 London Diagnostics, Eden Prairie, Minnesota
Forti et al (2012) (37) Resta et al (2012) (39) Kalmijn et al (2000) (38)	Cross-sectional Cross-sectional Cohort study	TSH >4.50 mU/liter, FT ₄ 10.3–25.7 pmol/liter TSH 3.6 mU/liter, FT ₄ 8–17 pmol/liter TSH >4 mU/liter, FT ₄ 11–25 pmol/liter	Roche Elecsys 2010 Vedere ILSA Study Ref 24 TSH Lumitest (Hennin, Berlin, Germany)

^a The 97.5th percentile of TSH adjusted for age was obtained by the general National Health and Nutrition Examination Survey cohort values as by Boucai et al (8).

^b The limits indicated the third percentile for men and women, respectively.

)	Dementia		
Study		log Odds	%
D		ratio (95% CI)	Weight
Under 75 yrs			
Kalmjin 2000	-	-0.74 (-2.76, 1.28)	3.15
Tan 2008		0.41 (0.05, 0.78)	26.00
Forti 2010		0.52 (-0.11, 1.14)	17.64
Resta 2012	•	0.71 (0.64, 0.77)	34.22
Subtotal (I-squared = 35.1%, p = 0.202)	\diamond	0.59 (0.36, 0.83)	81.01
Over 75 yrs			
Park 2010		-0.24 (-0.88, 0.39)	17.32
Formiga 2014	•	-1.46 (-4.29, 1.38)	1.67
Subtotal (I-squared = 0.0%, p = 0.413)	\diamond	-0.30 (-0.92, 0.32)	18.99
Overall (I-squared = 66.8%, p = 0.010)	\diamond	0.35 (-0.02, 0.73)	100.00
NOTE: Weights are from random effects analysis			
	0 .5 1 1.5 2 2.5		

DEMENTIA

The Rotterdam study Kalmijn et al. 2000 Clin Endo (Oxf)

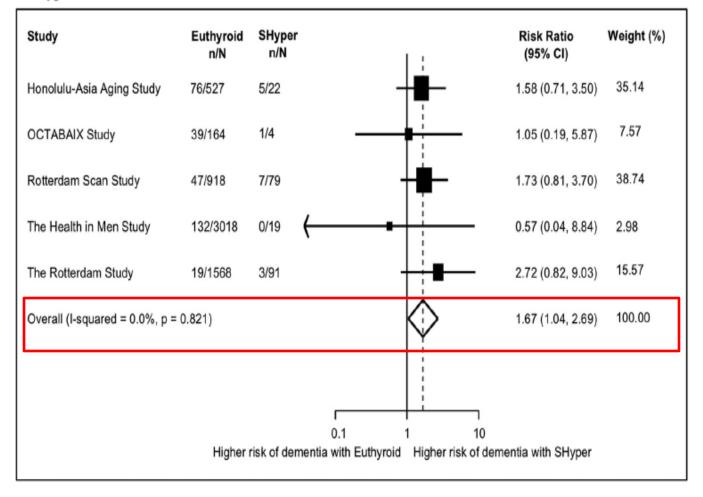
Prospective population based cohort study 1843 participants aged 55 years and over follow up 2 to 4 years

Table 2 Relative risk (95% confidence interval) for incident dementia according to thyroid status, adjusted for age and gender *

	n/N†	Total dementia	<i>n/</i> N†	Alzheimer's disease
TSH < 0.4 mU/l	24/1662	3.5 (1.2-10.0)	18/1656	3.5 (1.1-11.5)
Additional adjustment for atrial fibrillation	24/1662	3.5 (1.2-10.0)	18/1656	3.6 (1.1-11.7)
Excluding subjects taking beta blockers	23/1589	3.0 (1.0-9.5)	17/1583	2.9 (0.8-10.9)
T4 levels (per SD [‡])	5/102	2.9 (0.7-12.2)	4/101	2.1 (0.5-8.6)
TSH < 0.4 with positive antibodies§	16/1349	23.7 (4.0-140)	11/1344	14.3 (1.4-141)

SD, standard deviation.

* In all analyses thyromimetic or thyrostatic medication users are excluded; †Number of dementia patients and total number in the analyses; ‡One standard deviation = 23.3 nmol/l; §TPO-antibody level > 10 IU/ml; ¶ There were no demented subjects with increased TSH levels and positive antibodies.


Subclinical Thyroid Dysfunction and the Risk of Cognitive Decline: a Meta-Analysis of Prospective Cohort Studies JCEM 101: 4945–4954, 2016

Carole Rieben, Daniel Segna, Bruno R. da Costa, Tinh-Hai Collet, Layal Chaker, Carole E. Aubert, Christine Baumgartner, Osvaldo P. Almeida, Eef Hogervorst, Stella Trompet, Kamal Masaki, Simon P. Mooijaart, Jacobijn Gussekloo, Robin P. Peeters, Douglas C. Bauer, Drahomir Aujesky, and Nicolas Rodondi*

Table 1. Description of Included Studies for the Effect of Subclinical Thyroid Dysfunction on Dementia/Mini-MentalState Examination (MMSE)

Study Vorse of	Donulation	Momon	Maan Agai sa	Followup	A.r.o.	TSH Cuto mU/L	ff Level,	<i>ί</i> τ	Thyroid Hormone Beginigents
Study, Year of Publication	Population, N	Women, %	Mean Age; sd, y	Time, Months	Age, Min–Max, y	SHypo	SHyper	fT ₄ Measured	Recipients Excluded?
Rotterdam (31), 2000 ^c	1843	61.9	68.8; 7.5	25.2	55-93	>4.0	<0.4	Yes	Yes
Leiden 85-Plus Study (33), 2004	558	66.0	85.0; 0.0	44.4	85	>4.8	<0.3	Yes	In SA
Rotterdam Scan (38), 2006	1077	51.2	72.3 ^a ; 7.4	66.0	60-90	>4.3	<0.4	Yes	Yes
Health Ageing (36), 2008	1047	51.0	73.6; 6.2	24.0	64–94	>4.8 ^b	<0.3 ^b	Yes	Yes
Framingham (34), 2008 ^b	1864	59.0	71.0; 7.0	152.4				No	In SA
HAAS (30), 2009	665	0.0	78.0	56.4	71–93	>4.3	<0.4	Yes	Yes
Japanese Study (35), 2010	229	65.0	80.9; 4.7	12.0		>4.0	NR	Yes	Yes
Conselice (32), 2012 ^c	660	52.9	73.3; 6.0	45.6	65–91	>4.5	<0.45	Yes	In SA
HIMS (29), 2012	3401	0.0	76.8; 3.5	70.8 ^a	70-89	>4.0	<0.4	Yes	Yes
PROSPER (20), 2013	5154	49.4	75.0	38.4	80-82	>4.5	<0.45	Yes	Yes
OCTABAIX (37), 2014 ^d	307	54.6	85.0; 0.0	36.0	85	>5	<0.25	Yes	Yes

SHyper and Dementia

ORIGINAL ARTICLE

Revised: 3 August 2017

WILEY

The association between subclinical thyroid dysfunction and dementia: The Health, Aging and Body Composition (Health ABC) Study

Carole E. Aubert¹ Douglas C. Bauer² | Bruno R. da Costa³ | Martin Feller^{1,3} | Carole Rieben⁴ | Eleanor M. Simonsick⁵ | Kristine Yaffe^{6,7} | Nicolas Rodondi^{1,3} | For the Health ABC Study

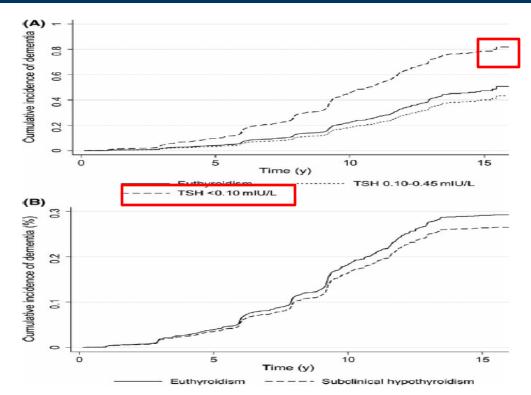


FIGURE 2 3MS change from baseline in subclinical thyroid dysfunction compared with euthyroidism. (A) subclinical hyperthyroidism with suppressed TSH (TSH <0.10 mIU/L) or with mildly decreased (TSH 0.10-0.44 mIU/L) (B) subclinical hypothyroidism. Analyses were adjusted for age, sex, race and education level. Abbreviations: CI, confidence interval; 3MS, Modified Mini-Mental State; SHyper, subclinical hyperthyroidism; SHypo, subclinical hypothyroidism

Dementia-HyperT

- **First,** dementia may be caused by an increase in neuronal necrosis and oxidative stress associated with both HT and Alzheimer's disease.
- Second, a genetic susceptibility may exist, as some thyroid hormones target genes are involved in neurogenesis.
- **Third,** dementia could be caused by lower choline in the brain, as described in Alzheimer's disease.
 - In a pilot study, choline/creatine ratio in the brain was indeed lower in patients with untreated Graves' disease, but normalized after treatment.

Aubert C, Clin Endo 2017

-No association SCH – MMS/dementia in patients >75 years

-Possible association SCH- some outcomes in patients <75 years

 Suppressed (>low) serum TSH is associated with and increased prevalence of dementia
 Lack of treatment evidence on the reversibility of low TSH ~ cognitive parameters

• Frailty / Bone

Subclinical Thyroid Dysfunction and Frailty Among Older Men JCEM 100: 4524–4532, 2015

Vanessa S. Virgini, Nicolas Rodondi, Peggy M. Cawthon, Stephanie Litwack Harrison, Andrew R. Hoffman, Eric S. Orwoll, Kristine E. Ensrud, and Douglas C. Bauer, for the Osteoporotic Fractures in Men (MrOS) Research Group

Table 1. Baseline Characteristics of Study Participants According to Thyroid Function

		Thyroid Function			
Demographics	All (n = 1455)	Subclinical Hyperthyroidism (n = 26)	Euthyroidism (n = 1327)	Subclinical Hypothyroidism (n = 102)	P Value
Demographics					
Age, y, mean (SD)	73.6 (5.8)	74.6 (6.5)	73.4 (5.7)	76.3 (6.0)	<.001
College education, n (%)	766 (52.2)	13 (50.0)	701 (52.8)	45 (44.1)	.23
Married status, n (%)	1214 (82.8)	21 (80.8)	1106 (83.4)	76 (74.5)	.07
Nonwhite race, n (%)	1336 (91.1)	22 (84.6)	1209 (91.1)	94 (92.2)	.48
Biometrics, mean (SD)		(
Weight, kg	83.3 (13.1)	84.5 (17.2)	83.3 (13.0)	83.3 (13.2)	.90
Height, cm	174.2 (6.7)	173.6 (7.2)	174.2 (6.7)	174.8 (7.1)	.62
BMI, kg/m ²	27.4 (3.7)	27.9 (4.4)	27.4 (3.7)	27.2 (3.5)	.67
Appendicular skeletal lean mass, kg	24.2 (3.4)	24.1 (3.8)	24.3 (3.4)	24.1 (3.5)	.91
Fatty composition, % total body	26.4 (5.2)	26.5 (6.0)	26.4 (5.1)	26.3 (5.6)	.99
Walking speed, m/s	1.20 (0.23)	1.17 (0.25)	1.20 (0.22)	1.18 (0.23)	.49
Grip strength, kg	38.4 (7.9)	37.1 (8.4)	38.4 (7.8)	37.8 (8.0)	.53
Medical conditions, n (%)	996 (67.9)	16 (61.5)	904 (68.1)	70 (68.6)	.77
Questionnaires	1265 (06.2)	24 (02.2)	1112 (06.2)	07 (05 0)	<i>C</i> 1
Excellent/good self-rated health, n (%)	1265 (86.3)	24 (92.3)	1143 (86.2)	87 (85.3)	.64
Feel full of energy, n (%)	730 (49.8)	17 (62.4)	652 (49.2)	55 (53.9)	.18
PASE score, mean (SD)	148.1 (68.9)	117.8 (60.7)	149.0 (69.2)	144.0 (66.8)	.06
Habits Smoking status, n (%)					
Never	539 (36.7)	11 (42.3)	476 (35.9)	46 (45.1)	.26
Past	872 (59.4)	15 (57.7)	798 (60.1)	54 (52.9)	.20
Current	56 (3.8)	0	53 (4.0)	2 (2.0)	
Drinking, n (%)	50 (5.6)	0	55 (4.0)	2 (2.0)	
<1 drink/wk	682 (46.5)	13 (50)	611 (46.0)	53 (52.0)	.30
1 drink/wk–14 drinks/wk	606 (41.3)	11 (42.3)	547 (41.2)	43 (42.2)	.50
>14 drinks/wk	179 (12.2)	2 (7.7)	169 (12.7)	6 (5.9)	
Falls	175 (12.2)	2 (1.1)	105 (12.7)	0 (5.5)	
Any falls in past year, n (%)	298 (20.3)	5 (19.2)	270 (20.4)	21 (20.6)	.99
≥ 2 falls in past year, n (%)	130 (8.9)	2 (7.7)	119 (9.0)	8 (7.8)	.91
Frailty components, mean (SD)	0.93 (1.07)	1 38 (0.98)	0.91 (1.06)	1 08 (1 11)	005
Frailty classification, n (%)					
Robust	652 (44.4)	4 (15.4)	604 (45.5)	38 (37.3)	.02
Intermediate	680 (46.4)	19 (73.1)	602 (45.4)	54 (52.9)	
Frail	135 (9.2)	3 (11.5)	121 (9.1)	10 (9.8)	
Frailty criteria, n (%)					
Sarcopenia	290 (19.9)	7 (28.0)	254 (19.3)	27 (26.5)	.13
Weakness	381 (26.0)	10 (38.5)	336 (25.3)	31 (30.4)	.18
Exhaustion	108 (7.4)	4 (15.4)	96 (7.2)	7 (6.9)	.28
Slowness	283 (19.3)	6 (23.1)	249 (18.8)	27 (26.5)	.15
Low activity level	281 (19.6)	9 (34.6)	258 (19.4)	18 (17.7)	.14

Abbreviations: N, number; sd, standard deviation; BMI, body mass index; PASE, Physical Activity Scale for Elderly.

	Thyroid Status					
	Subclinical Hyperthyroidism (n = 26)	Euthyroidism (n = 1327)	Subclinical Hypothyroidism (n = 102)			
Frailty components, adjusted means (95% CI)	1.29 (0.91–1.68) ^a	0.92 (0.87-0.97)	0.89 (0.70-1.09)			
Frailty classifications, OR (95% CI) ^b	2.48 (1.15–5.34) ^c	1.00	0.94 (0.63–1.41) ^c			
Frailty criteria						
Sarcopenia	1.55 (0.61–3.94)	1.00	1.38 (0.84-2.26)			
Weakness	1.63 (0.68-3.95)	1.00	0.87 (0.54-1.39)			
Exhaustion	2.21 (0.71-6.89)	1.00	0.84 (0.38-1.89)			
Slowness	0.94 (0.32-2.75)	1.00	1.11 (0.68–1.82)			
Low activity	1.91 (0.82–4.44)	1.00	0.81 (0.48-1.39)			

Cross-Sectional Relationship Retween Thyroid Function and Frailty at Raseline Visit

Results are adjusted for age, race, BMI, and clinic.

Table 2

^a P value for interaction compared with that for euthyroidism: 0.2559.

^b Frailty classifications include frailty, intermediate, and robust. Ordinal logistic model used.

^c OR for an increased likelihood of greater frailty status (including all frailty categories).

Table 3.	Cross-Sectional Relationship	Between Thyroid Function	and Frailty Depending on	Age at Baseline Visit
		,		2

	Age <74 Yr Thyro	id Status		Age ≥74 Yr Thyroid Status		
	Subclinical Hyperthyroidism (n = 13)	Euthyroidism (n = 717)	Subclinical Hypothyroidism (n = 31)	Subclinical Hyperthyroidism (n = 13)	Euthyroidism (n = 610)	Subclinical Hypothyroidism (n = 71)
Frailty components, adjusted means (95% CI)	1.29 (0.80–1.77) ^a	0.63 (0.57–0.70)	0.73 (0.42–1.04)	1.45 (0.83–2.08)	1.23 (1.14–1.32)	1.22 (0.96–1.49)
Frailty classifications, OR (95% CI) ^b	3.59 (1.20–10.72) ^c	1.00 (ref)	1.15 (0.57–2.35) ^c	2.07 (0.71–6.04) ^c	1.00 (ref)	1.00 (0.62–1.60) ^c
Frailty criteria Sarcopenia	2.88 (0.81–10.24)	1.00 (ref)	1.88 (0.72–4.90)	0.93 (0.24–3.70)	1.00 (ref)	1.26 (0.71–2.22)
Weakness	3.41 (1.03–11.30)	1.00 (ref)	· · · · ·	1.10 (0.35–3.45)	1.00 (ref)	1.16 (0.70–1.93)
Exhaustion	1.25 (0.15–10.15)	1.00 (ref)		4.06 (0.94–17.57)	1.00 (ref)	0.46 (0.14–1.55) ^a
Slowness	2.76 (0.66–11.50)	1.00 (ref)	2.68 (1.07–6.72) ^a		1.00 (ref)	0.97 (0.55–1.70) ^a
Low activity	2.15 (0.63–7.35)	1.00 (ref)	0.67 (0.23–1.98)		1.00 (ref)	0.92 (0.49–1.71)

Abbreviation: ref, reference. Results are adjusted for age, race, BMI, and clinic.

^a *P* value for interactions: <0.10.

^b Frailty classifications include frailty, intermediate, and robust. Ordinal logistic model used.

^c OR for an increased likelihood of greater frailty status (including all frailty categories).

· ·	Thyroid Status						
	Subclinical Hyperthyroidism (n = 22)	Euthyroidism (n = 1102)	Subclinical Hypothyroidism (n = 85)				
Frailty components, adjusted means (95% CI) Frailty classifications, OR (95% CI) ^b Frailty criteria	1.52 (1.00–2.05) ^a 1.09 (0.49–2.42) ^c	1.24 (1.17–1.32) 1.00	1.18 (0.89–1.47) 1.00 (0.66–1.52) ^c				
Sarcopenia Weakness Exhaustion Slowness Low activity	1.86 (0.50-6.96) 1.39 (0.49-3.94) 1.05 (0.23-4.80) 0.65 (0.19-2.25) 2.32 (0.86-6.25)	1.00 1.00 1.00 1.00 1.00	1.39 (0.63–3.08) 0.73 (0.41–1.30) 1.16 (0.54–2.48) 1.23 (0.69–2.22) 0.71 (0.38–1.32)				

12 D L C 1.1 D (τL 1.1.6 12 L E 11 A.C. E - II. 1.1 E 1/ 1.1

Abbreviation: ref, reference. Results are adjusted for age, race, BMI, and clinic.

^a *P* value for interaction compared with euthyroidism: 0.3310.

^b Frailty classifications include frailty, intermediate, robust, and dead. Partial proportional odds test.

^c OR for an increased likelihood of greater frailty status (including all frailty categories).

Subclinical Thyroid Dysfunction and Fracture Risk:

A Meta-analysis

Manuel R. Blum, MD, Douglas C. Bauer, MD, Tinh-Hai Collet, MD, Howard A. Fink, MD, MPH, Anne R. Cappola, MD, ScM, Bruno R. da Costa, PhD, Christina D. Wirth, MD, Robin P. Peeters, MD, PhD, Bjørn O. Åsvold, MD, PhD, Wendy P. J. den Elzen, PhD, Robert N. Luben, PhD, Misa Imaizumi, MD, PhD, Alexandra P. Bremner, PhD, Apostolos Gogakos, MD, PhD, Richard Eastell, MD, Patricia M. Kearney, MD, PhD, MPH, Elsa S. Strotmeyer, MD, PhD, Erin R. Wallace, PhD, Mari Hoff, MD, PhD, Graziano Ceresini, MD, PhD, Fernando Rivadeneira, MD, PhD, André G. Uitterlinden, PhD, David J. Stott, MD, PhD, Rudi G. J. Westendorp, MD, PhD, Kay-Tee Khaw, MD, Arnuf Langhammer, MD, PhD, Luigi Ferrucci, MD, PhD, Jacobijn Gussekloo, MD, PhD, Graham R. Williams, MBBS, PhD, John P. Walsh, MBBS, PhD, Peter Jüni, MD, Drahomir Aujesky, MD, MSc, and Nicolas Rodondi, MD, MAS for the Thyroid Studies Collaboration

The final sample consisted of 70298 participants (median age 64 years; <u>61.3%</u> <u>women</u>), a median (IQR) follow-up of 12.1 (8.3–13.0) years

A total of 63 987 (91.0%) of the participants were euthyroid, 4092 (5.8%) had SCH, and **2219 (3.2%) had Shyper:**

- including 1669 (2.4%) with low but not suppressed TSH (0.10–0.44)
- 550 (0.8%) with suppressed TSH (<0.10 mIU/L)

	Euthyroidism		Subclinica Hyperthy			Higher Fracture	e Higher Fracture	
Fracture Outcome by Age and Sex	No. With Fracture	Total No. of Participants	No. With Fracture	Total No. of Participants	Hazard Ratio (95% Cl)	Risk in Euthyroidism	Risk in Subclinical Hyperthyroidism	P for Interactio
Hip fracture ^a								
Sex								
Men	606	21854	22	468	1.92 (1.26-2.94)		· · · · · · · · · · · · · · · · · · ·	
Women	1928	34617	124	1614	1.29 (1.08-1.55)			.09
Age, y ^u								
<75	1360	47540	78	1646	1.54 (1.22-1.93)			
≥75	1162	8462	67	431	1.22 (0.95-1.56)	-		.18
Overall	2534	56471	146	2082	1.36 (1.13-1.64)		\diamond	
Any fracture ^c								
Sex								
Men	796	13091	32	327	1.69 (1.18-2.41)			
Women	1407	12810	89	561	1.21 (0.98-1.51)			.12
Age, y ^b					and the second			
<75	1363	20067	69	649	1.33 (1.04-1.69)		_	
≥75	840	5834	52	239	1.24 (0.93-1.65)			.72
Overall	2203	25901	121	888	1.28 (1.06-1.53)		\diamond	
Nonspine fracture ^d								
Sex								
Men	592	10326	24	282	1.53 (1.01-2.31)			
Women	1153	11396	83	664	1.10 (0.88-1.37)			.17
Age, y ^b								
<75	1218	18707	69	766	1.17 (0.85-1.59)			
≥75	527	2847	36	175	1.08 (0.77-1.53)			.74
Overall	1745	21722	107	946	1.16 (0.95-1.41)		\bigcirc	
Spine fracture ^e								
Sex								
Men	106	10332	7	282	3.61 (1.76-7.41)			->
Women	149	9996	10	450	1.17 (0.63-2.19)	-	-	.02
Age, y ^b								
<75	167	17476	9	581	1.64 (0.87-3.10)			
≥75	86	2732	8	148	1.83 (0.89-3.79)			.82
Overall	255	20328	17	732	1.51 (0.93-2.45)			
							.0 zard Ratio (95% CI)	5.0

Figure 2. Stratified Analyses for the Association Between Subclinical Hyperthyroidism and Fracture Risk

Fracture Outcome by	Euthyroid	ism	Subclinica Hyperthy			Higher Fracture	Higher Fracture	
Thyroid-Stimulating Hormone Levels, mIU/L	No. With Fracture	Total No. of Participants	No. With Fracture	Total No. of Participants	Hazard Ratio (95% CI)	Risk in Euthyroidism	Risk in Subclinical Hyperthyroidism	P for Trend
Hip fracture ^a								
0.45-4.49	2534	56471			1 [Reference]			
0.10-0.44			99	1568	1.34 (1.01-1.77)			.001
<0.10			47	510	1.61 (1.21-2.15)			Z
Any fracture ^b								
0.45-4.49	2203	25901			1 [Reference]			
0.10-0.44			77	676	1.10 (0.87-1.38)	-	-	<.001
<0.10			44	212	1.98 (1.41-2.78)			
 Nonspine fracture ^c								
0.45-4.49	1745	21722			1 [Reference]			
0.10-0.44			74	757	1.02 (0.81-1.29)	_	-	.07
<0.10			32	185	1.61 (0.96-2.71)			
 Spine fracture ^d								
0.45-4.49	255	20328			1 [Reference]			
0.10-0.44			9	566	1.12 (0.59-2.13)		-	<.001
<0.10			8	162	3.57 (1.88-6.78)			\mapsto
							.0 zard Ratio (95% CI)	5.0

Figure 3. Association Between Subclinical Hyperthyroidism and Fracture Risk Categorized by Thyroid-Stimulating Hormone Level

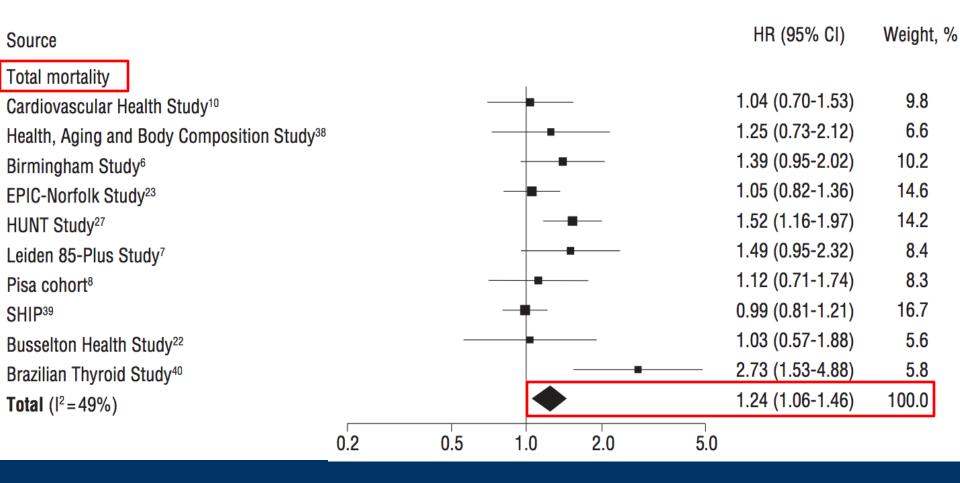
Does bone benefit from treating postmenopausal women with Shyper?

- Postmenopausal women with SHyper (TSH <0.2 mIU / L) due to multinodular goiter were randomised for I* treatment and followed for two years:
 - treated patients had normal TSH levels
 - had no significant change in lumbar and hip BMD
 - untreated patients with low TSH levels
 - had a continued loss of bone mass of about 1 to 2 percent per year Faber J et al. Clin Endocrinol (Oxf) 1998

 Significant increase in BMD in persons with SHyper after six months of normalization of thyroid function tests
 Greenlund LJ et al. Endocr Pract. 2008

-Suppressed (>low) serum TSH is associated with

- frailty / older men
- (hip) fractures


-Lack of treatment evidence on the reversibility of low TSH ~ fracture rate

• MORBIDITY

- General symptoms
- Lipids
- Atherosclerosis, Cardio Vascular aspects
- Cognitive aspects
- Frailty / Bone

• MORTALITY

Meta-analysis of 10 cohort studies

• 52,000 participants (2188 with SH)

Collet et al. Arch Intern Med 2012

Acute cardiovascular events and all-cause mortality in patients with hyperthyroidism: a population-based cohort study

Olaf M Dekkers^{1,2,3}, Erzsébet Horváth-Puhó¹, Suzanne C Cannegieter³, Jan P Vandenbroucke^{1,3}, Henrik Toft Sørensen¹ and Jens Otto L Jørgensen⁴

EJE (2017) 176, 1–9

Table 1 Characteristics of patients with hyperthyroidism and members of the population comparison cohort at the time ofdiagnosis/index date.

	Hyperthyroidism	cohort (<i>n</i> =85856)	Population comparison	cohort (<i>n</i> =847057)	
	n	%	n	%	
Age					
<51 years	22 474	26.5	216141	26.5	
51–60 years	15865	18.5	158678	18.5	
61–70 years	17 180	20.0	171722	20.0	
>70 years	30064	35.0	300516	35.0	
Gender					
Female	70505	82.1	693 588	82.1	
Male	15351	17.9	153469	17.9	
Year of hyperthyroidism diagnosis					
1980–1989	15603	17.5	-	-	
1990–1999	25414	29.6	-	-	
2000–2012	45379	52.9	-	-	
Cancer history					
No	79002	92.0	787606	93.0	
Yes	6854	8.0	59451	7.0	
Diabetes					
No	81 489	94.9	820909	96.9	
Yes	4367	5.1	26148	3.1	
Hypertension					
No	77 790	90.6	790443	93.3	
Yes	8066	9.4	56614	6.7	
COPD					
No	80010	93.2	812156	95.9	
Yes	5846	6.8	34901	4.1	

 Table 3
 Stratified analyses for risk of mortality, venous thromboembolism (VTE), acute myocardial infarction (AMI), ischemic and non-ischemic stroke, arterial

 embolism, atrial fibrillation (AF) and percutaneous coronary intervention (PCI) in patients with hyperthyroidism. The table presents hazard ratios (adjusted) with 95%

 confidence intervals.

		Males	Females	-		Patients >60 and ≤70 years	
Outcome	Time since diagnosis	(n=15351)	(n=70505)	(n=22747)	(n = 15635)	(n = 16798)	(n=28929)
All-cause	0–1 year	2.47 (2.32, 2.64)	2.57 (2.49, 2.66)	3.37 (2.60, 4.36)	2.81 (2.40, 3.28)	3.03 (2.78, 3.31)	2.46 (2.38, 2.54)
mortality	>1–3 years	1.31 (1.23, 1.40)	1.39 (1.35, 1.44)	1.19 (0.94, 1.50)	1.52 (1.34, 1.73)	1.58 (1.47, 1.71)	1.33 (1.28, 1.37)
	>3–30 years	1.29 (1.24, 1.33)	1.37 (1.35, 1.39)	1.15 (1.09, 1.28)	1.29 (1.24, 1.34)	1.38 (1.34, 1.42)	1.38 (1.35, 1.40)
VTE	0–1 year	2.07 (1.58, 2.70)	1.84 (1.59, 2.12)	2.18 (1.38, 3.42)	2.21 (1.48, 3.30)	2.32 (1.75, 3.07)	1.70 (1.45, 2.00)
	>1–3 years	1.01 (0.76, 1.36)	1.25 (1.10, 1.41)	1.06 (0.70, 1.61)	1.50 (1.07, 2.08)	1.32 (1.04, 1.68)	1.11 (0.95, 1.30)
	>3–30 years	1.13 (0.98, 1.31)	1.13 (1.06, 1.20)	1.07 (0.93, 1.24)	1.18 (1.04, 1.33)	1.19 (1.07, 1.33)	1.06 (0.96, 1.18)
AMI	0–1 year	1.15 (0.93, 1.41)	1.58 (1.40, 1.78)	2.49 (1.31, 4.71)	1.67 (1.19, 2.34)	1.59 (1.27, 1.98)	1.34 (1.18, 1.52)
	>1–3 years	0.93 (0.78, 1.12)	1.03 (0.93, 1.14)	0.87 (0.51, 1.50)	1.23 (0.94, 1.61)	1.03 (0.85, 1.25)	0.95 (0.85, 1.07)
	>3-30 years	1.00 (0.91, 1.10)	1.17 (1.12, 1.24)	1.31 (1.16, 1.49)	1.23 (1.11, 1.35)	1.14 (1.05, 1.24)	1.01 (0.94, 1.09)
Ischemic	0–1 year	1.33 (1.08, 1.63)	1.67 (1.50, 1.85)	1.82 (1.04, 3.19)	2.20 (1.56, 3.12)	1.76 (1.41, 2.21)	1.50 (1.34, 1.67)
stroke	>1-3 years	1.23 (1.04, 1.45)	1.33 (1.22, 1.44)	1.50 (1.01, 2.24)	1.54 (1.18, 2.01)	1.53 (1.29, 1.81)	1.22 (1.11, 1.34)
	>3–30 years	1.06 (0.97, 1.16)	1.28 (1.23, 1.33)	1.27 (1.13, 1.42)	1.31 (1.20, 1.43)	1.23 (1.15, 1.32)	1.19 (1.13, 1.27)
Non-ischemic	0–1 year	1.30 (0.79, 2.16)	1.96 (1.54, 2.49)	1.58 (0.46, 5.40)	2.46 (1.20, 5.04)	2.18 (1.32, 3.61)	1.68 (1.29, 2.19)
stroke	>1-3 years	1.33 (0.89, 1.97)	1.29 (1.05, 1.59)	0.55 (0.17, 1.81)	1.37 (0.78, 2.41)	2.21 (1.56, 3.12)	1.10 (0.86, 1.39)
	>3-30 years	1.13 (0.90, 1.41)	1.22 (1.10, 1.35)	0.72 (0.52, 1.01)	1.28 (1.05, 1.56)	1.21 (1.02, 1.43)	1.32 (1.14, 1.52)
Arterial	0–1 year	1.52 (1.46, 1.58)	2.95 (2.31, 3.77)	4.07 (1.41, 11.77)	2.88 (1.08, 7.64)	3.47 (2.15, 5.61)	2.73 (2.11, 3.54)
embolism	>1–3 years	1.65 (1.03, 2.63)	1.69 (1.37, 2.10)	1.52 (0.52, 4.44)	1.45 (0.73, 2.86)	1.37 (0.83, 2.25)	1.75 (1.39, 2.21)
	>3-30 years	1.64 (1.27, 2.13)	1.69 (1.37, 2.10)	1.76 (1.32, 2.36)	1.49 (1.17, 1.91)	1.66 (1.36, 2.01)	1.65 (1.40, 1.94)
AF	0–1 year	4.47 (3.91, 5.12)	3.56 (3.30, 3.84)	8.47 (5.65, 12.7)	7.13 (5.64, 9.02)	5.36 (4.63, 6.19)	3.09 (2.85, 3.35)
	>1–3 years	1.74 (1.51, 2.01)	1.67 (1.55, 1.81)	2.60 (1.76, 3.84)	2.66 (2.14, 3.30)	1.80 (1.55, 2.09)	1.54 (1.42, 1.67)
	>3–30 years	1.41 (1.31, 1.53)	1.47 (1.42, 1.53)	1.73 (1.57, 1.91)	1.53 (1.42, 1.65)	1.44 (1.36, 1.53)	1.37 (1.30, 1.44)
PCI	0–1 year	1.86 (1.47, 2.36)	2.19 (1.80, 2.66)	3.56 (1.93, 6.56)	1.89 (1.28, 2.81)	2.27 (1.74, 2.96)	1.64 (1.30, 2.07)
	>1–3 years	0.97 (0.76, 1.23)	0.89 (0.72, 1.09)	0.67 (0.32, 1.39)	0.88 (0.59, 1.30)	1.00 (0.76, 1.31)	0.85 (0.68, 1.08)
	>3-30 years	1.05 (0.90, 1.22)	1.07 (0.95, 1.20)	1.34 (1.05, 1.71)	1.16 (0.97, 1.39)	0.99 (0.85, 1.17)	0.87 (0.73, 1.04)
	-						

 Table 2
 Rates and hazard ratios with 95% confidence intervals (95% CIs) for risk of mortality, venous thromboembolism (VTE), acute myocardial infarction (AMI), ischemic and non-ischemic stroke, arterial embolism, atrial fibrillation (AF) and percutaneous coronary intervention (PCI) in patients with hyperthyroidism, stratified by time since diagnosis.

Outcome	Time since diagnosis	Rate (95% Cl) per 1000 person-years in hyperthyroidism cohort (n=85856)	Rate (95% CI) per 1000 person-years in comparison cohort (n=847057)	Hazard ratio (95% Cl), age and sex-adjusted model	Hazard ratio (95% CI), fully adjusted model*
All-cause mortality	0–3 months	122.66 (117.9, 127.4)	27.42 (26.71, 28.14)	4.66 (4.45, 4.89)	4.62 (4.40, 4.85)
	>3–6 months	61.02 (57.59, 64.46)	27.89 (27.16, 28.62)	2.32 (2.18, 2.47)	2.20 (2.06, 2.34)
	>6–12 months	46.13 (44.02, 48.24)	28.06 (27.55, 28.58)	1.76 (1.67, 1.85)	1.68 (1.59, 1.76)
	>1–3 years	38.86 (37.84, 39.89)	29.34 (29.07, 29.62)	1.44 (1.40, 1.48)	1.37 (1.33, 1.41)
	>3-30 years	40.16 (39.64, 40.69)	35.80 (35.65, 35.95)	1.40 (1.38, 1.42) 🛛 🗎	1.35 (1.33, 1.37)
VTE	0–3 months	6.97 (5.82, 8.11)	2.15 (1.94, 2.35)	3.28 (2.71, 3.97)	3.11 (2.56, 3.77)
	>3–6 months	2.88 (2.13, 3.63)	1.93 (1.73, 2.12)	1.50 (1.13, 1.99)	1.46 (1.10, 1.95)
	>6–12 months	2.62 (2.11, 3.13)	1.91 (1.77, 2.05)	1.43 (1.16, 1.76)	1.36 (1.10, 1.69)
	>1–3 years	2.39 (2.13, 2.65)	1.98 (1.91, 2.05)	1.25 (1.11, 1.40)	1.20 (1.07, 1.35)
	>3-30 years	2.46 (2.33, 2.59)	2.35 (2.31, 2.39)	1.16 (1.09, 1.23)	1.13 (1.06, 1.20)
AMI	0–3 months	9.08 (7.75, 10.40)	3.79 (3.52, 4.07)	2.42 (2.06, 2.85)	2.24 (1.90, 2.65)
	>3–6 months	4.93 (3.94, 5.93)	3.76 (3.48, 4.04)	1.34 (1.08, 1.67)	1.25 (1.00, 1.56)
	>6–12 months	4.48 (3.81, 5.15)	3.71 (3.52, 3.91)	1.24 (1.05, 1.45)	1.12 (0.95, 1.32)
	>1–3 years	3.88 (3.55, 4.21)	3.82 (3.72, 3.92)	1.05 (0.96, 1.15)	1.00 (0.91, 1.10)
	>3-30 years	4.28 (4.11, 4.45)	4.12 (4.07, 4.17)	1.17 (1.12, 1.23)	1.13 (1.08, 1.18)
Ischemic stroke	0–3 months	11.02 (9.56, 12.48)	3.95 (3.67, 4.23)	2.77 (2.38, 3.22)	2.70 (2.31, 3.14)
	>3–6 months	5.03 (4.02, 6.03)	4.32 (4.02, 4.61)	1.18 (0.95, 1.46)	1.11 (0.90, 1.38)
	>6–12 months	5.75 (4.99, 6.51)	4.43 (4.22, 4.64)	1.34 (1.16, 1.55)	1.29 (1.11, 1.48)
	>1–3 years	5.81 (5.41, 6.21)	4.48 (4.37, 4.59)	1.35 (1.25, 1.45)	1.31 (1.21, 1.41)
	>3-30 years	6.43 (6.22, 6.64)	5.83 (5.77, 5.89)	1.27 (1.22, 1.31)	1.24 (1.19, 1.29)
Non-ischemic stroke		1.81 (1.22, 2.40)	0.74 (0.62, 0.86)	2.51 (1.74, 3.63)	2.47 (1.70, 3.58)
	>3–6 months	1.52 (0.96, 2.07)	0.75 (0.62, 0.87)	2.11 (1.41, 3.15)	2.15 (1.42, 3.25)
	>6–12 months	0.91 (0.61, 1.21)	0.70 (0.61, 0.78)	1.34 (0.94, 1.91)	1.30 (0.91, 1.86)
	>1-3 years	0.99 (0.83, 1.16)	0.77 (0.72, 0.81)	1.35 (1.13, 1.62)	1.30 (1.08, 1.55)
	>3-30 years	0.98 (0.90, 1.06)	0.90 (0.87, 0.92)	1.22 (1.11, 1.34)	1.20 (1.10, 1.32)
Arterial embolism	0–3 months	2.62 (1.92, 3.32)	0.45 (0.36, 0.54)	6.08 (4.33, 8.53)	6.08 (4.30, 8.61)
	>3–6 months	1.16 (0.69, 1.64)	0.59 (0.48, 0.69)	2.05 (1.31, 3.22)	1.93 (1.22, 3.07)
	>6–12 months	0.88 (0.59, 1.18)	0.50 (0.43, 0.56)	1.96 (1.36, 2.82)	1.93 (1.33, 2.79)
	>1-3 years	0.87 (0.72, 1.03)	0.54 (0.50, 0.58)	1.73 (1.43, 2.10)	1.66 (1.37, 2.02)
	>3-30 years	0.82 (0.75, 0.90)	0.55 (0.53, 0.57)	1.69 (1.52, 1.87)	1.64 (1.48, 1.82)
AF	0–3 months	34.93 (32.19, 37.67)	4.89 (4.56, 5.22)	7.27 (6.55, 8.07)	7.32 (6.58, 8.14)
	>3-6 months	15.49 (13.62, 17.35)	5.08 (4.75, 5.42)	3.11 (2.71, 3.58)	3.02 (2.62, 3.47)
	>6–12 months	11.92 (10.77, 13.07)	4.94 (4.71, 5.18)	2.43 (2.18, 2.71)	2.36 (2.11, 2.63)
	>1-3 years	8.68 (8.16, 9.20)	5.24 (5.12, 5.37)	1.75 (1.63, 1.86)	1.69 (1.58, 1.81)
	>3-30 years	9.29 (9.02, 9.56)	7.26 (7.19, 7.33)	1.49 (1.45, 1.54)	1.46 (1.42, 1.51)
PCI	0–3 months	7.53 (6.09, 8.97)	2.15 (1.91, 2.40)	3.60 (2.88, 4.51)	3.47 (2.75, 4.37)
	>3-6 months	3.00 (2.07, 3.93)	1.90 (1.67, 2.14)	1.63 (1.17, 2.28)	1.51 (1.08, 2.12)
	>6–12 months	2.45 (1.85, 3.04)	1.75 (1.60, 1.91)	1.42 (1.10, 1.84)	1.35 (1.03, 1.75)
	>1-3 years	1.88 (1.60, 2.16)	2.06 (1.97, 2.15)	0.94 (0.81, 1.10)	0.89 (0.76, 1.04)
	>3-30 years	2.16 (1.98, 2.35)	2.13 (2.08, 2.19)	1.08 (0.99, 1.18)	1.04 (0.95, 1.14)
	>3-30 years	2.10 (1.30, 2.33)	2.13 (2.00, 2.13)	1.00 (0.33, 1.18)	1.04 (0.55, 1.14)

*Model adjusted for age, sex, calendar time (by study design), cancer, diabetes, hypertension, obesity, chronic obstructive pulmonary disease, liver disease and alcoholism-related diseases.

Conclusions

Results: The study included 85856 hyperthyroid patients and 847057 matched population-based controls. Mean follow-up time was 9.2 years. The HR for mortality was highest in the first 3 months after diagnosis of hyperthyroidism: 4.62, 95% CI: 4.40–4.85, and remained elevated during long-term follow-up (>3 years) (HR: 1.35, 95% CI: 1.33–1.37). The risk for all examined cardiovascular events was increased, with the highest risk in the first 3 months after hyperthyroidism diagnosis. The 3-month post-diagnosis risk was highest for atrial fibrillation (HR: 7.32, 95% CI: 6.58-8.14) and arterial embolism (HR: 6.08, 95% CI: 4.30-8.61), but the risks of VTE, AMI, ischemic and non-ischemic stroke and PCI were increased also 2- to 3-fold. Conclusions: We found an increased risk for all-cause mortality and acute cardiovascular events in patients

with hyperthyroidism.

Meta-summary of meta-analyses

• RR (5-95% CI)

Author	Number	Cardiovascular mortality	All cause mortality
Singh 2008	13,267	1.28 (1.02–1.60)	1.12 (0.99-1.26)
Ochs 2008	14,449	1.18 (0.98-1.42)	1.12 (0.99-1.26)
Haentjens 2008	14,619	NI	1.22 (0.95-1.57)
Razvi 2008	29,022	1.09 (0.84 –1.41)	NI
Rodondi 2010	55,287	1.14 (0.99- 1.32)	1.09 (0.96-1.24)
Thvilum 2012	35,740	NI	1.17 (1.00-1.37)

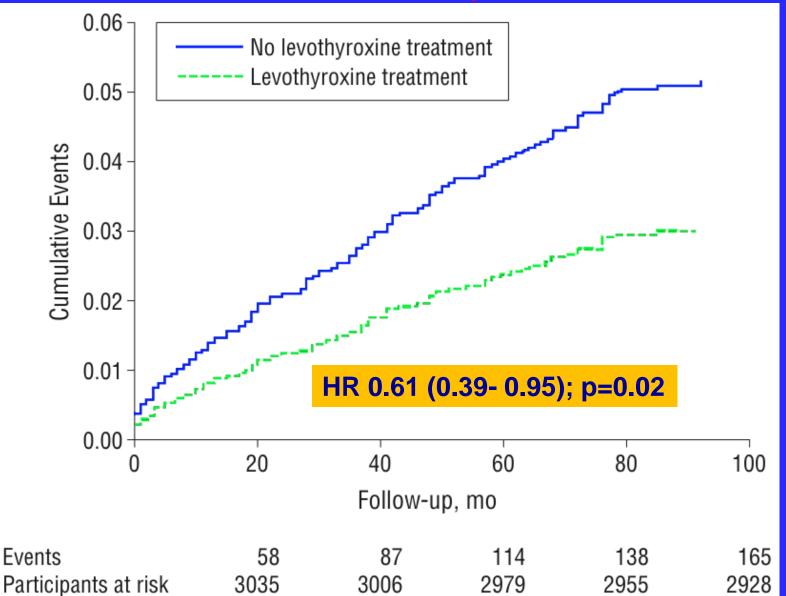
Treatment evidence ?

ORIGINAL INVESTIGATION

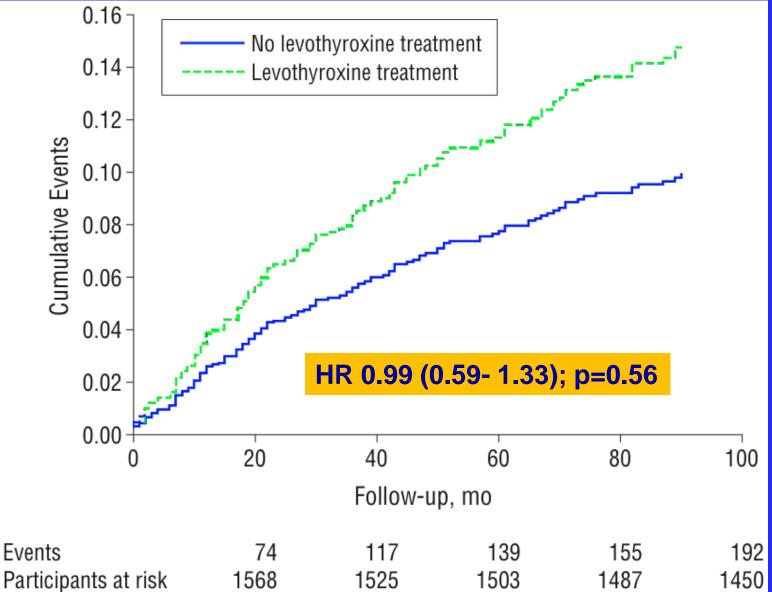
Levothyroxine Treatment of Subclinical Hypothyroidism, Fatal and Nonfatal Cardiovascular Events, and Mortality

Salman Razvi, MD, FRCP; Jolanta U. Weaver, PhD, FRCP; Timothy J. Butler, MRCGP; Simon H. S. Pearce, MD, FRCP Arch Intern Med. 2012; 172(10):811-817.

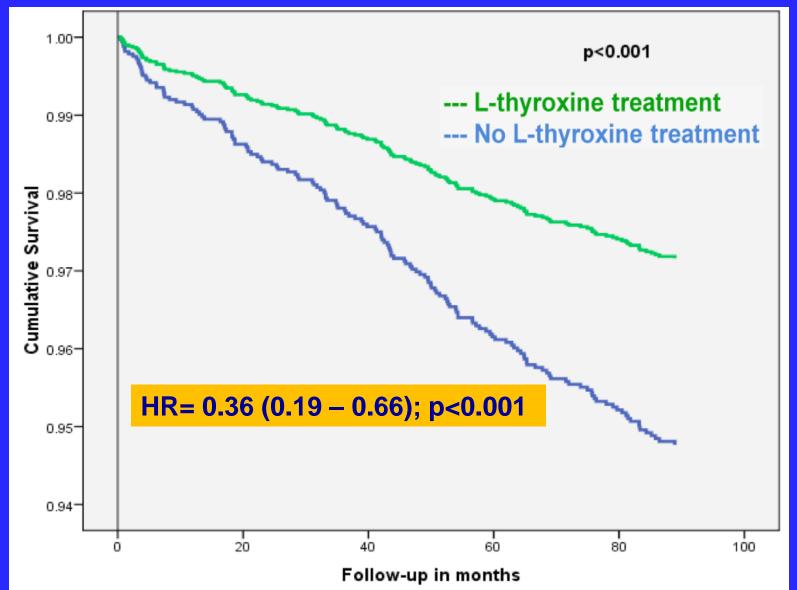
UK General Practice Research Database

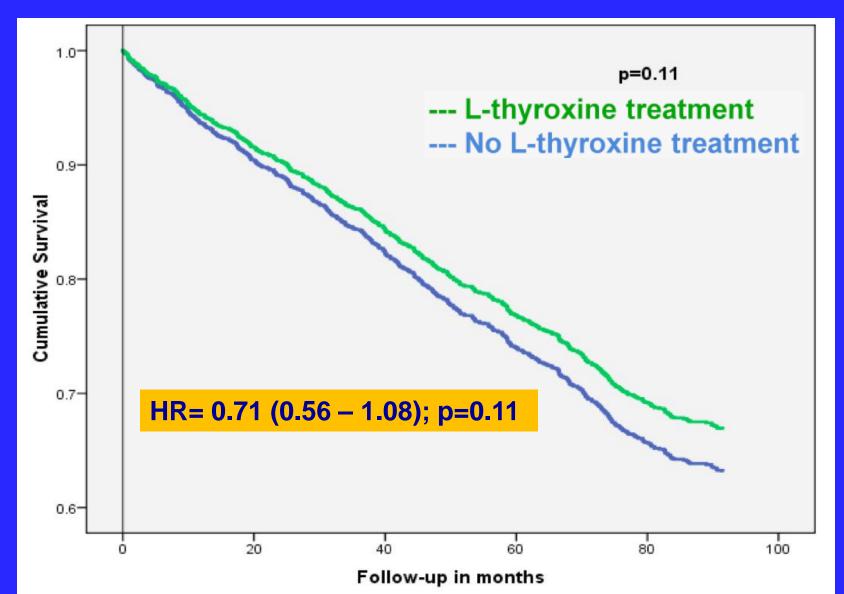

- Primary care resource linking ~10 million patient records, labs, prescriptions & death certificates
- During 2001 there were 322,291 TSH measurements
- Identified 4,735 people > 40 yrs with TSH 5.0- 10.0 mU/l, nl FT4
- Excluded individuals on L-T4, ATDs, previous thyroid disease, previous IHD, stroke, other vascular disease
- Participants followed 2001-2008 (median 7.6 yrs)
- People aged 40- 70 yrs (n=3093) and >70 yrs (n=1642)
- <u>53% and 50% were treated with LT4 (median dose 75µg (12.5-175 µg)</u> <u>daily)</u>
- Primary Care decision

Razvi S et al. Arch Intern Med 2012


Baseline characteristics

	40-70 yrs		>70 yrs	
	Untreated	L-T4 Rx	Untreated	L-T4 Rx
Number	1459	1634	823	819
Age	55.9 ± 8.3	55.9 ± 8.4	79.9 ± 6.5	79.4 ± 6.2
Females	82.5%	87.4%	75.6%	84.6%
Serum TSH (mU/I)	6.3 ± 1.3	6.7 ± 1.4	6.3 ± 1.2	6.8 ± 1.4
Serum FT4 (pM)	13.4 ± 4.4	12.9 ± 3.0	14.6 ± 4.4	13.9 ± 3.4
BMI (Kg/m ²)	27.8 ± 5.9	28.1 ± 6.2	25.4 ± 4.6	26.3 ± 5.1
Systolic BP (mmHg)	136.5 ± 20.0	135.2 ± 19.3	149.4 ± 23.5	149.4 ± 22
T Cholesterol (mM)	5.86 ± 1.34	5.82 ± 1.21	5.93 ± 1.36	5.95 ± 1.25
Diabetes	18.0%	18.1%	26.9%	26.6%
Smokers (current)	18.3%	17.9%	10.9%	10.1%
Deprivation index	17.5	16.75	15.86	16.58
GP contacts/yr	1.2	1.3	2.3	2.4


Fatal & non-fatal vascular events 40-70 yrs


Fatal & non-fatal IHD events >70 yrs

All cause mortality 40-70 yrs

All cause mortality >70 yrs

Degree of serum TSH elevation

- Median serum TSH: 6.6 mU/l
- Reference group (HR=1) is untreated patients

	Hazard Ratio for	P value for trend	
	TSH 6.6 or less	TSH > 6.6	
40-70 yrs	0.62 (0.39-0.96)	0.41(0.26-0.81)	0.007
>70 yrs	1.02 (0.66-1.82)	1.19 (0.74-1.80)	NS

Razvi et al. Arch Int Med 2012

- Strong association with (all-cause) mortality in all age groups and HT, especially during the first year of diagnosis
- Weak/absent association with SCH >70 years

This association does however seems to be <u>weaker</u> or even <u>absent</u> in older population (> 70 years)

– Two main hypotheses are running to explain this:

- late onset of SCH
- reference range for serum TSH (FT4) are not adapted according to age

Definition of SCH

High serum TSH (above the upper limit of the assay)

How are normal TSH reference values determined ?

« Normal ranges »

Are determined after correction for

1/ TPO-abs

2/ severe iodine deficiency

« Normal ranges »

Are determined after correction for

1/ TPO-abs
2/ severe iodine

Age-Specific Distribution of Serum Thyrotropin and Antithyroid Antibodies in the U.S. Population: Implications for the Prevalence of Subclinical Hypothyroidism

Martin I. Surks and Joseph G. Hollowell

TABLE 3. Mean and median TSH concentration with 97.5 centile (milliinternational units per liter) by age group in disease-free and reference populations, NHANES III (1988–1994)

Age groups (yr)	Sample size	Mean	se mean	Geometric mean	se geometric mean	Median	95% confidence limits	97.5 centile	95% confidence limits
A. Disease-free population ^a									
Total	16,533	1.97^{b}	0.05	1.50	0.02	1.49	1.46 - 1.50	5.52	5.24 - 32.93
12–19	2,431	1.71	0.08	1.39	0.03	1.37	1.31 - 1.51	4.20	3.82 - 6.51
20-29	3,186	1.54	0.04	1.27	0.02	1.28	1.25 - 1.36	4.02	3.76 - 6.77
30-39	2,981	1.75	0.11	1.36	0.03	1.35	1.31 - 1.44	4.57	4.04 - 9.62
40-49	2,290	2.09	0.12	1.60	0.04	1.50	1.46 - 1.57	5.75	4.99 - 21.14
50 59	1,554	2.21	0.13	1.67	0.03	1.60	1.57 1.70	5.73	5.28 19.62
60-69	1,834	2.34	0.08	1.83	0.04	1.79	1.71 - 1.95	7.48	6.21 - 11.89
70-79	1,333	3.10	0.24	2.03	0.05	1.98	1.87 - 2.09	9.80	8.58 - 25.93
80+	924	2.85	0.14	2.02	0.09	2.08	1.92 - 2.28	9.36	7.71-19.75
B. Reference population ^c									
Total	13,344	1.64^{b}	0.02	1.40	0.02	1.39	1.39 - 1.47	4.12	3.96 - 6.23
12–19	2,172	1.59	0.04	1.36	0.03	1.35	1.28 - 1.49	4.07	3.69 - 4.80
20-29	2,564	1.43	0.03	1.24	0.02	1.26	1.19 - 1.29	3.56	3.26 - 4.71
30-39	2,482	1.50	0.04	1.30	0.03	1.29	1.29 - 1.41	3.69	3.40 - 4.33
40-49	1,882	1.64	0.04	1.44	0.03	1.40	1.35 - 1.52	3.82	3.49 - 4.83
50-59	1,145	1.74	0.03	1.52	0.03	1.50	1.46 - 1.63	4.03	3.68 - 4.94
60-69	1,430	1.91	0.05	1.65	0.04	1.67	1.60 - 1.79	4.33	4.02 - 5.45
70-79	1,001	2.16	0.06	1.75	0.04	1.76	1.68 - 1.85	5.90	5.24 - 8.60
80+	668	2.44	0.12	1.86	0.08	1.90	1.74 - 2.13	7.49	6.17 - 10.85

^a Disease-free population are people who did not report having thyroid disease or taking thyroid medications.

^b TSH concentration (milliinternational units per liter).

^c In the reference population, we excluded those who were pregnant; those reporting thyroid disease; those taking estrogens, androgens, lithium, or thyroid medications; and those with antibodies or laboratory evidence of overt hypo- or hyperthyroidism.

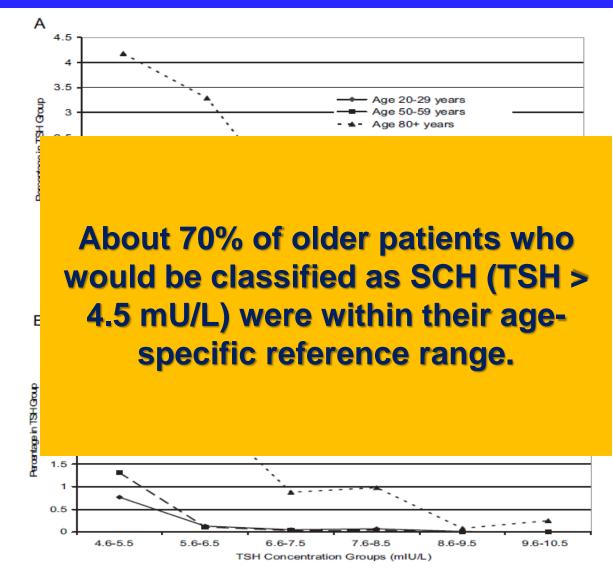


FIG. 3. Percent TSH concentration greater than 4.5 mIU/liter in the U.S. population by age and concentration groups. A, Disease-free population, antibodies not excluded. B, Reference population, NHANES III (1988–1994).

Clinica Chimica Acta 465 (2017) 34-39

Contents lists available at ScienceDirect

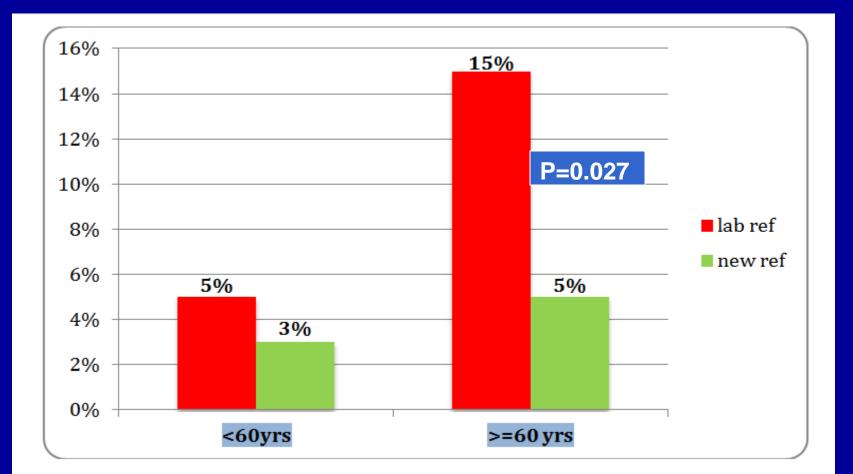
Clinica Chimica Acta

journal homepage: www.elsevier.com/locate/clinchim

Prevalence of thyroid dysfunction and autoimmunity in the older population and implications of age-specific reference ranges

Flora Veltri^a, Francisco Oliveira Rocha^b, Dominique Willems^c, Jean-Philippe Praet^b, Lidia Grabczan^a, Pierre Kleynen^a, Thierry Pepersack^b, Kris Poppe^{a,*}

^a Department of Internal Medicine, Université Libre de Bruxelles (ULB), Rue Haute 322, 1000 Brussels, Belgium


^b Endocrine Unit, Department of Clinical Chemistery of the Centre Hosptilalier Universitaire Saint Pierre, Université Libre de Bruxelles (ULB), Rue Haute 322, 1000 Brussels, Belgium

^c Geriatric Unit, Department of Clinical Chemistery of the Centre Hosptilalier Universitaire Saint Pierre, Université Libre de Bruxelles (ULB), Rue Haute 322, 1000 Brussels, Belgium

TSH			
	<60 yrs	≥60 yrs	р
mean	1,73924569	2,270843373	0,0007
STD	1,135023274	2,040223687	
median	1,5	1,59	
min	0,1	0,09	
max	7,12	8,63	
pc2.5	0,24575	0.30 0,153	
pc97.5	4,42975	4.0 8,238	
	La	ab refs	

Proportion of increased serum TSH according to « new ref for age »

<60	yrs	≥60 yrs			
Lab ref	<mark>New ref</mark>	Lab ref	<mark>New ref</mark>		
TSH >4.0 mU/L N (%)	TSH >4.43 mU/L N (%)	TSH>4.0 mU/L N (%)	TSH>8.24 mU/L N (%)		
30/559 (5%)	17/559 (3%)	17/117 (15%)	6/117 (5%)		

REVIEV

Association between increased serum thyrotropin concentration and the oldest old: what do we know? Associação entre aumento da concentração de tirotropina e longevos: o que sabemos?

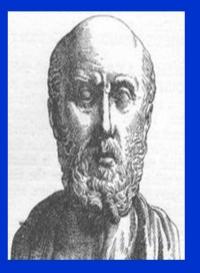
Glaucia Cruzes Duarte¹, Maysa Seabra Cendoroglo¹, Lara Miguel Quirino Araújo¹, Clineu de Mello Almada Filho¹

Einstein. 2015;13(1):117-21

Chart 1. Studies evaluati	ng the association between subclinion	cal hypothyroidism and the oldest old
---------------------------	---------------------------------------	---------------------------------------

Studie			TSH							
	Author	Year	Study design	n	Age	(upper limit) (mIU/L)	Follow-up	Endpoints	Exclusion criteria	Outcomes/results
	Gussekloo et al. ⁽⁴⁾	2004	Prospective cohort	/04	80-84	4.8	4 years	I hyroid status, disability, cognition, survival	N/A	Abnormally high levels of TSH may prolong life span
	Surks et al. ⁽⁵⁾	2007	SR of cohort	16,533	12-80+	4.5	N/A	Prevalence of SCH	Report of thyroid disease, goiter, or use of thyroid- related medications	SCH is overestimated, unless an age-specific range for TSH is used
	Rodondi et al. ⁽⁷⁾	2010	SR of prospective cohort	55,287	18-100	4.5	Variable	CHD and CHD mortality	Mainly symptomatic individuals and/or overt hypothyroidism	SCH associated with risk of CHD and CHD mortality in individuals with TSH>10 mIU/L
	Hogervorst et al. ⁽⁹⁾	2008	Prospective cohort	1,047	64-94	4.8	2 years	Cognition	Physical frailty or severe cognitive impairment	High log TSH levels associated with lower MMSE scores
	Van den Beld et al. ⁽¹⁾	") 2005	Cross- sectional	403	73-94	4.3	4 years	Thyroid hormones, physical function, mortality	Females, individuals who did not live independently, severe mobility problems, severe systemic disease, physical or mental incapacity to visit study center	Low serum fT4 associated with better 4-year survival, reflecting an adaptive mechanism to prevent excessive catabolism
	Atzmon et al. ⁽¹⁴⁾	2009	Case-control	232	97+	4.0	NA	Longevity and TSH	NA	TSH higher in centenarians and may contribute to longevity
	Atzmon et al. ⁽¹⁵⁾	2009	Case-control	598	69-85+	4.0	NA	Genetic of high TSH and longevity	NA	SNPs in the TSHR contribute to decreased thyroid function and longevity
	Rozing et al. ⁽¹⁶⁾	2010	Cross- sectional	859	89+	4.8	N/A	Longevity and thyroid function	N/A	Low thyroid activity constitutes a heritable phenotype and contributes to familial longevity
	Corsonello et al. ⁽¹⁷⁾	2010	Cross- sectional	604	60-85+	4.2	N/A	Longevity and thyroid function	N/A	Decreased thyroid function related to longevity
	Spencer et al. ⁽¹⁹⁾	2008	SR of cohort	16,088	12-80+	4.5	NA	TSH and aTPO	Report of thyroid disease or use of thyroid-related medications	Upper limits of TSH may be skewed by aTPO-negative individuals with occult autoimmune thyroid dysfunction
	Duarte et al. ⁽²⁰⁾	2009	Case-control	399	60-92	4.0	NA	Prevalence of thyroid dysfunction in the elderly	Report of thyroid or liver disease, thyroid surgery, radioactive iodine therapy, radiologic tests with contrast media or use of thyroid-related medications	The elderly have higher prevalence of hypothyroidism and thyroid nodules; one-third have elevated urinary iodine excretion and autoimmune thyroiditis
	Benseñor et al. ⁽²¹⁾	2011	Cross- sectional	1,373	65-80+	5.0	N/A	Prevalence of thyroid dysfunction in the elderly	N/A	Prevalence of thyroid disease in men, and undiagnosed hypothyroidism is higher
	Tonial et al. ⁽²²⁾	2007	Cross- sectional	109	60-80	5.6	N/A	Prevalence of hypothyroidism in	N/A	High prevalence of hypothyroidism

Cł	Chart 1. Studies evaluating the association between subclinical hypothyroidism and the oldest old										
A	uthor	Year	Study design	n	Age	TSH (upper limit) (mIU/L)	Follow-up	Endpoints	Exclusion criteria	Outcomes/results	
	Gussekloo et al. ⁽²⁾	2004	Prospective cohort	/04	80-84	4.8	4 years	I hyroid status, disability, cognition, survival	N/A	Abnormally high levels of TSH may prolong life span	
	Surks et al. ⁽⁵⁾	2007	SR of cohort	16,533	12-80+	4.5	N/A	Prevalence of SCH	Report of thyroid disease, goiter, or use of thyroid- related medications	SCH is overestimated, unless an age-specific range for TSH is used	
	Rodondi et al. ⁽⁷⁾	2010		55 007		nifio	0nt	inoro	aco in	CCH associated with risk of CHD of CHD mortality in individuals with TSH>10 mIU/L	
	Hogervorst et al. ⁽⁹⁾	2008							ase in	igh log TSH levels associated with lower MMSE scores	
	Van den Beld et al. ⁽¹	11) 2005							ronary	aprive mechanism to prevent	
								e, or t		excessive catabolism	
	Atzmon et al. ⁽¹⁴⁾	2009	m	0	rta	lity v	was	obse	rved.	SH higher in centenarians and may contribute to longevity	
	Atzmon et al. ⁽¹⁵⁾	2009								NPs in the TSHR contribute to ecreased thyroid function and longevity	
	Rozing et al. ⁽¹⁶⁾	2010							_	ow thyroid activity constitutes a heritable phenotype and	
	Corsonello et al.(17)	2010		E	ev	<i>atec</i>	d thy	rotro	pin	pontributes to familial longevity creased thyroid function related to longevity	
	Spencer et al. ⁽¹⁹⁾	2008		C	:01	ncen	trat	ion w	as	Upper limits of TSH may be skewed by aTPO-negative individuals with occult	
	Duarte et al. ⁽²⁰⁾	2009	as	SO	ci	ated	wit	h long	gevity.	toimmune thyroid dysfunction The elderly have higher valence of hypothyroidism and yroid nodules; one-third have elevated urinary iodine excretion	
									with contrast media or use of thyroid-related medications	and autoimmune thyroiditis	
	Benseñor et al. ⁽²¹⁾	2011	Cross- sectional	1,373	65-80+	5.0	N/A	Prevalence of thyroid dysfunction in the elderly	N/A	Prevalence of thyroid disease in men, and undiagnosed hypothyroidism is higher	
	Tonial et al. ⁽²²⁾	2007	Cross- sectional	109	60-80	5.6	N/A	Prevalence of hypothyroidism in	N/A	High prevalence of hypothyroidism	



-Age-specific reference ranges can have an important impact on study results/conclusions/treatment proposals

ESPECIALLY in case of SCH

Management in daily practice

LT4 – SCH ?

Primun non nocere

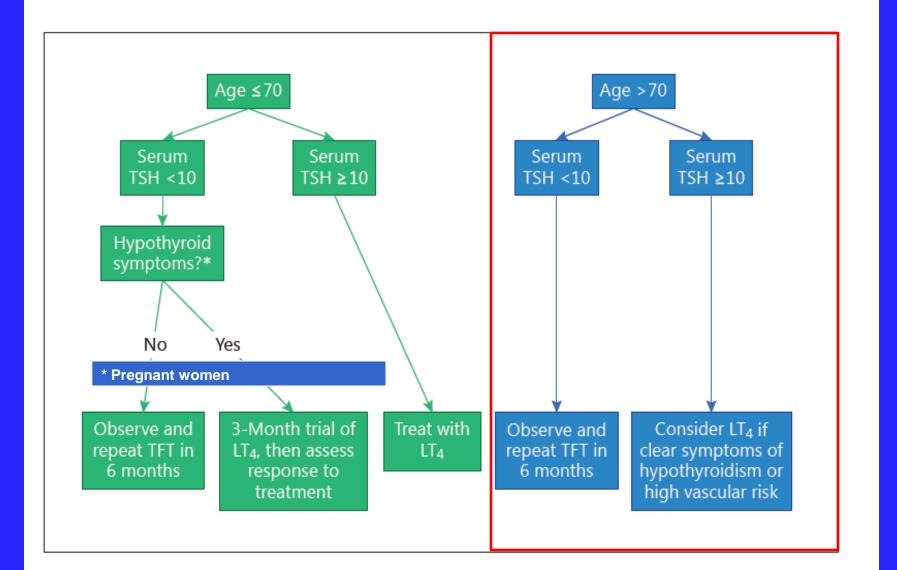
Hipócrates, S. V a AC

Paracelso (1493-1541)

"Dosis sola facit venenum"

Who should we consider treating?

- Symptoms or signs of hypothyroidism
- Age < 70 yrs
- TSH > 7.0 mU/l
- Goitre
- High vascular risk including
 - Ischaemic heart disease
 - Diabetes
 - Dyslipidaemia


Guidelines

European Thyroid Journal

Eur Thyroid J 2013;2:215–228 DOI: 10.1159/000356507 Received: September 26, 2013 Accepted: October 7, 2013 Published online: November 2

2013 ETA Guideline: Management of Subclinical Hypothyroidism

Simon H.S. Pearce^{a, b} Georg Brabant^c Leonidas H. Duntas^d Fabio Monzani^e Robin P. Peeters^f Salman Razvi^{a, g} Jean-Louis Wemeau^h

e			7
	<u>'</u>	-	L

R M Ruggeri and others

Thyroxine therapy in the frail elderly

177:4 R199-R217

MANAGEMENT OF ENDOCRINE DISEASE L-Thyroxine replacement therapy in the frail elderly: a challenge in clinical practice

R M Ruggeri¹, F Trimarchi² and B Biondi³

¹Department of Clinical and Experimental Medicine, UOC Endocrinology, University of Messina, Italy, ²Accademia Peloritana dei Pericolanti, University of Messina, Messina, Italy, and ³Department of Clinical Medicine and Surger University of Naples Federico II, Naples, Italy European Journal of Endocrinology (2017) **177**, R199–R217

Box 1 | Considerations of levothyroxine replacement in the elderly

- Ideal body weight is best used for dose calculations, and lean body mass is the best predictor of daily requirements;¹⁴³ a once-daily dose of 1.6 µg/kg is an optimal starting dose¹⁰
- Previous reports recommend a low starting dose in elderly individuals (50 µg daily),^{144,145} although a retrospective study¹⁴⁶ and a randomized trial¹⁴⁷ demonstrated that full starting doses (100 µg) in asymptomatic individuals are safe
- Current guidelines recommend a starting dose of levothyroxine of 50 µg daily in individuals aged 50–60 years without evidence of coronary heart disease¹⁰
- Serum TSH level should be rechecked 4–8 weeks after start or change of levothyroxine therapy and every 6–12 months once an adequate replacement dose has been determined¹⁰
- Absorption of levothyroxine can be reduced owing to interference with a number of medications commonly prescribed to the elderly, including oral bisphosphonates, ferrous sulphate and proton-pump inhibitors¹⁰
- In patients with known coronary heart disease, the usual starting dose should be reduced (typically to 12.5–25.0 µg daily); clinical monitoring for the onset of angina symptoms is essential¹⁰
- Overtreatment with levothyroxine should be avoided, especially in elderly patients who are more susceptible to atrial fibrillation¹¹⁸
- Postmenopausal women, who constitute a notable proportion of those on levothyroxine replacement, are prone to accelerated bone loss if serum TSH is suppressed as a consequence of excessive levothyroxine replacement⁸⁶
- In view of a physiological increase in the serum TSH concentration with age,^{36,39} the threshold for starting levothyroxine replacement in patients with subclinical hypothyroidism aged >60 years should be higher than that in young people

THYROID Volume 26, Number 10, 2016 © American Thyroid Association © Mary Ann Liebert, Inc. DOI: 10.1089/thy.2016.0229

2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis

Douglas S. Ross,^{1*} Henry B. Burch,^{2**} David S. Cooper,³ M. Carol Greenlee,⁴ Peter Laurberg,^{5†} Ana Luiza Maia,⁶ Scott A. Rivkees,⁷ Mary Samuels,⁸ Julie Ann Sosa,⁹ Marius N. Stan,¹⁰ and Martin A. Walter¹¹

Factor	TSH (<0.1 mU/L)	$TSH (0.1-0.4 mU/L)^{a}$
Age >65 years	Yes	Consider treating
Age <65 years with comorbidities		
Heart disease	Yes	Consider treating
Osteoporosis	Yes	Consider treating
Menopausal, not on estrogens or bisphosphonates	Yes	Consider treating
Hyperthyroid symptoms	Yes	Consider treating
Age <65 years, asymptomatic	Consider treating	Observe

TABLE 10. SUBCLINICAL HYPERTHYROIDISM: WHEN TO TREAT

^aWhere 0.4 mU/L is the lower limit of the normal range.

SPECIAL ARTICLE

TABLE 8. CLINICAL SITUATIONS THAT FAVOR A PARTICULAR MODALITY AS TREATMENT FOR TOXIC MULTINODULAR GOITER OR TOXIC ADENOMA

Clinical situations	RAI	ATD	Surgery
TMNG			
Pregnancy ^a	Х	$\sqrt{\sqrt{1!}}$	$\sqrt{1!}$
Advanced age, comorbidities with increased surgical risk and/or	$\sqrt{}$		X
limited life expectancy			
Patients with previously operated or externally irradiated necks	$\sqrt{}$		
Lack of access to a high-volume thyroid surgeon	ĴĴ	V	
Symptoms or signs of compression within the neck		-	$\sqrt{}$
Thyroid malignancy confirmed or suspected	X		ĴĴ
Large goiter/nodule	\checkmark		ĴĴ
Goiter/nodule with substernal or retrosternal extension	Ĵ	-	ĴĴ
Coexisting hyperparathyroidism requiring surgery	-	-	$\sqrt{}$

 $\sqrt{\sqrt{=}}$ preferred therapy; $\sqrt{=}$ acceptable therapy; != cautious use; -= not usually first line therapy but may be acceptable depending on the clinical circumstances; X=contraindication.

^aFor women considering a pregnancy within 6 months, see discussion in Section [T2].

Global Conclusions

 Thyroid function results in the elderly (>70 years) should be interpreted with caution as the "normal" range differ from that in younger population.

- This might explain few associations with SCH

- A single abnormal TSH result should be monitored over time as a substantial number of people with SCH will normalise spontaneously.
- SCH in elderly people should not be treated routinely if TSH is <10 mU/L and if the patient is otherwise well.
- If LT4 is given, start "low & go slow"

- sch is associated with a number of adverse outcomes (and suppressed TSH > low TSH)
- Think about confounding conditions / factors in the DD
- A single abnormal TSH result should be monitored over time as a substantial number of people with SCH will normalise spontaneously
- Endogenous HT seems to be stronger associated with altered outcomes than exogenous HT
- An evidence vacuum remains on the efficacy of the treatment ...

Acknowledgements

Pr. Th. Pepersack

