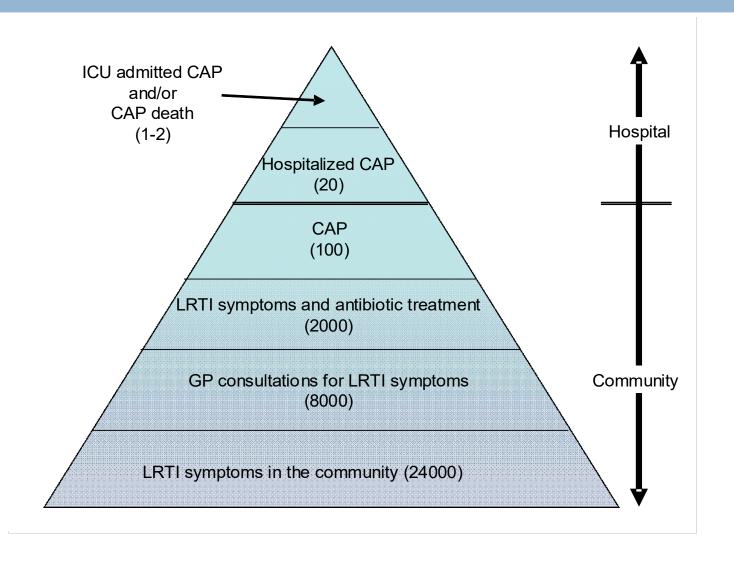

INFECTION PREVENTION IN OLDER PERSONS

Johan Flamaing, MD PhD
Dept. Geriatric Medicine UZ
Leuven, Belgium

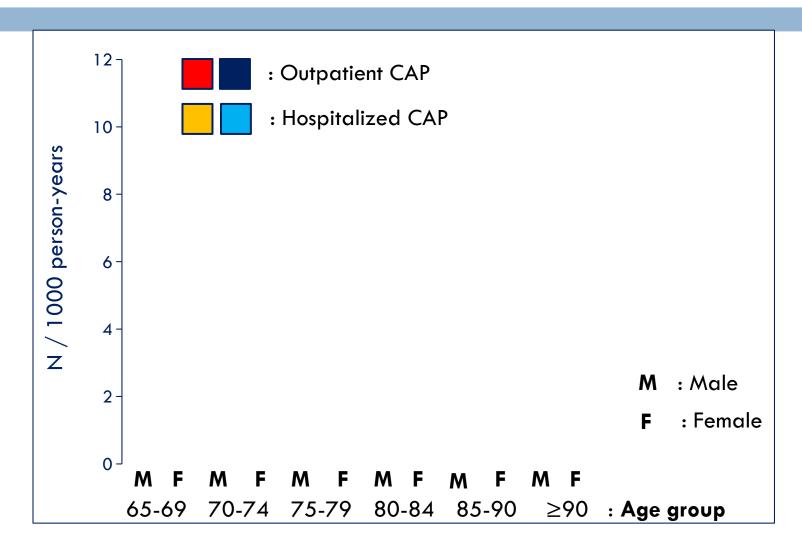
Dept. Clinical and Experimental

Incidence and mortality of infectious diseases

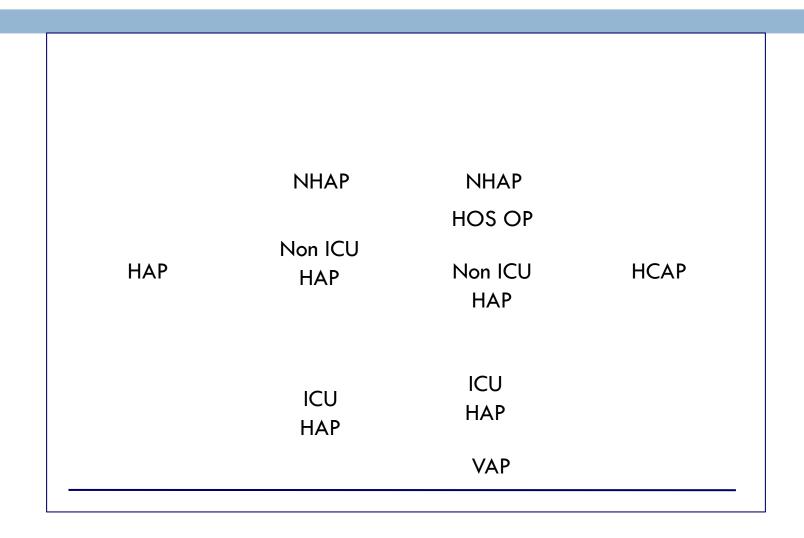
België

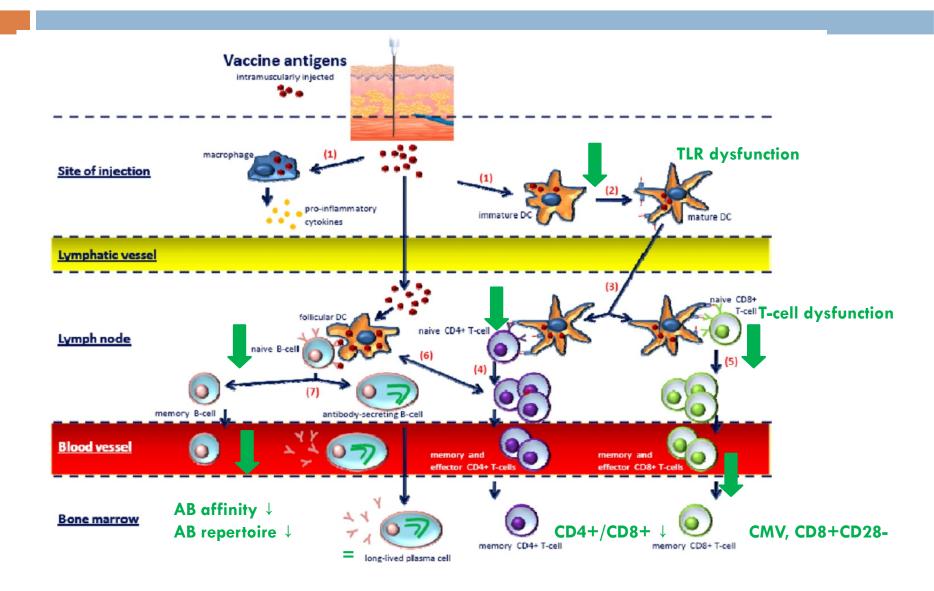

Top ten causes of death, a Belgium, 2002	ll ages		
	Deatl	ns	Years of Life Lost
Causes	(000)	(%)	(%)
All causes	102	100	100
Ischaemic heart disease	14	15	13
Cerebrovascular disease	9	9	6
Trachea, bronchus, lung cancers	7	7	8
Lower respiratory infections	5	5	3
Chronic obstructive pulmonary disease	4	5	4
Alzheimer and other dementias*	4	4	2
Colon and rectum cancers	3	3	3
Breast cancer	2	3	4
Self-inflicted injuries	2	2	6
Prostate cancer	2	2	1

Source: Death and DALY estimates by cause, 2002

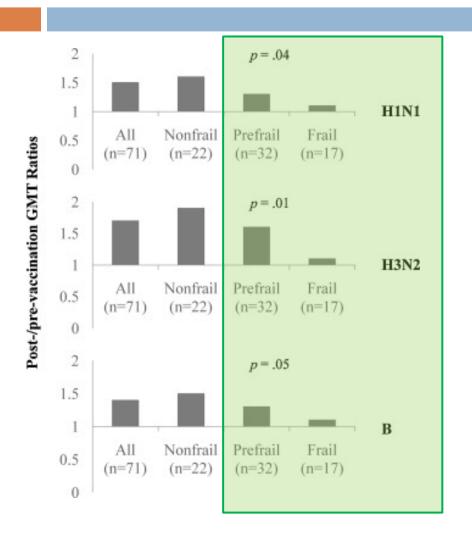

http://www.who.int/entity/healthinfo/statistics/bodgbddeathdalyestimates.xls

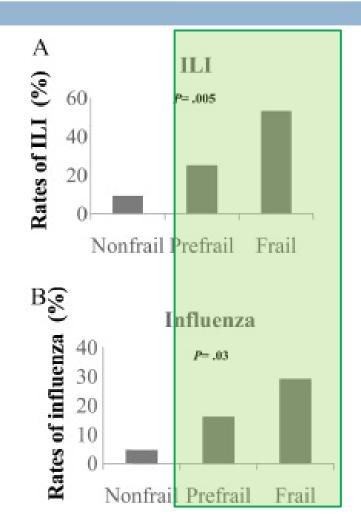
http://www.who.int/healthinfo/statistics/bodgbddeathdalyestimates.xls


Incidence of Lower Respiratory Tract Infections

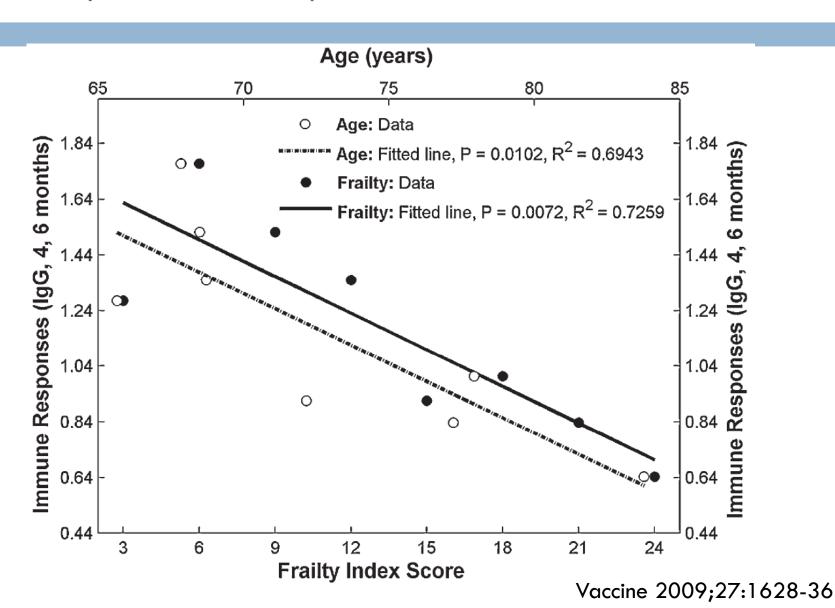

Incidence of Lower Respiratory Tract Infections

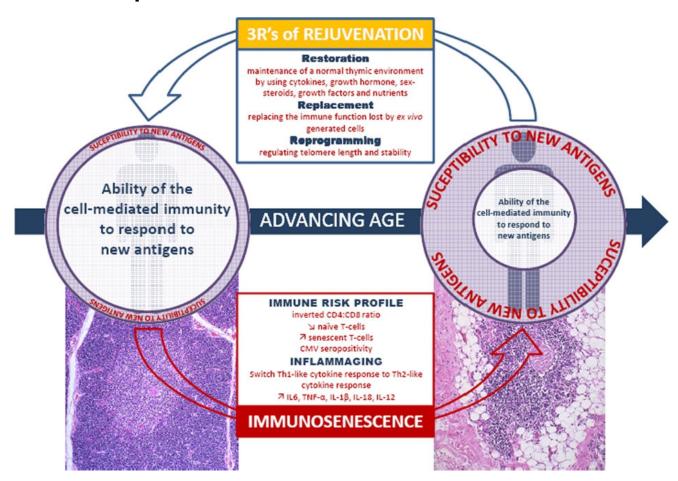
Pneumonia and Health Care Setting




Immunosenescence

Immunosenescence


Frailty and immune response TIV


Immunosenescence

Frailty and immune response PCV7 & PPV23

Tackling immunosenescence

Immune — rejuvenation

Tackling immunosenescence

Enhancing vaccine effect Vaccine coverage (epidemiology, valency) High dose vaccines Adjuvated vaccines Vaccine formulations (virosome, ID, IN + SC/IM,...) Booster vaccines

Higher postvaccination Ab titers

Influenza vaccination Belgium

A. Group 1:

- Pregnant women (2nd & 3th trimester)
- > 6 m. + chronic heart, lung, kidney, liver, metabolic, neuromuscular, immunological disease
- 24 65 y.
- Institutionalized persons
- 6m 18 y. + chronic aspirine use

Group 2:

Health care workers

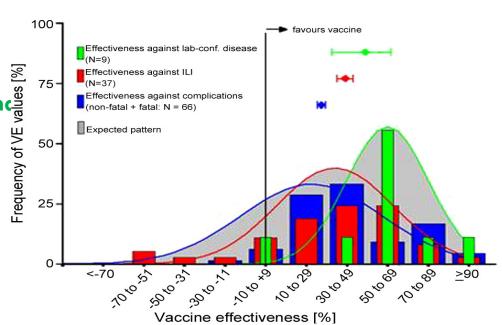
Evidence: controversies TIV

Authors' conclusions

The available evidence is of poor quality and provides no guidance regarding the safety, efficacy or effectiveness of influenza vaccines for people aged 65 years or older.

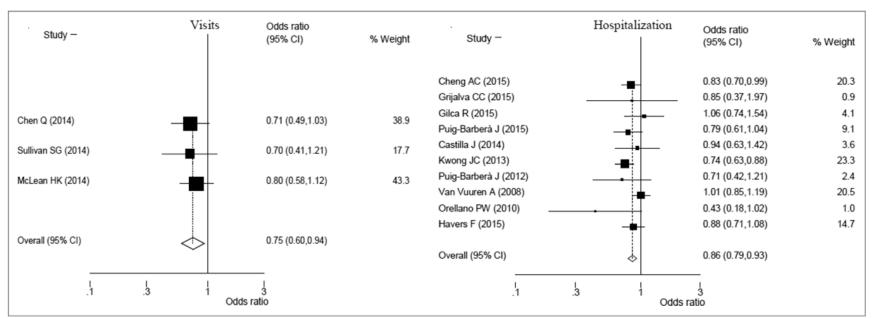
Cochrane Trusted evidence.

DOI: 10.1002/14651858.CD004876.pub3


Trusted evidence. Informed decisions. Better health.

Cochrane re-arranged:

Support for policies to vaccin



(2013) 6030-6033

TIV vaccination in the elderly

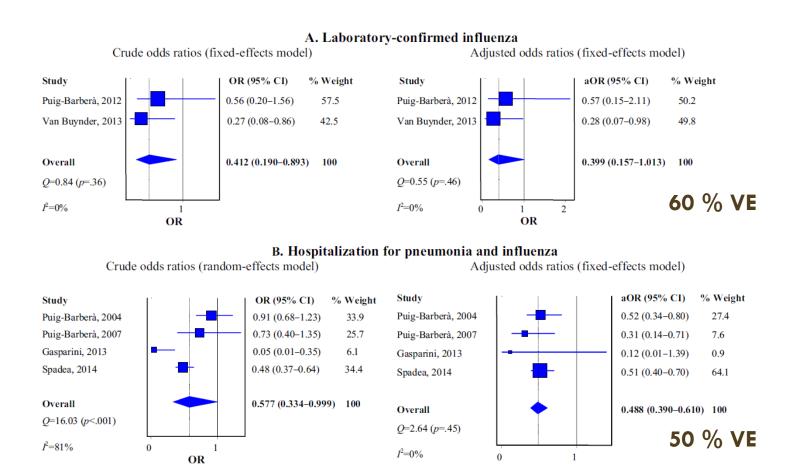
- Influenza vaccination effect elderly
 - □ VE visits: 25 %
 - □ \/□ |₋ - !1 | ! - 1 / 0/

Effectiveness of seasonal influenza vaccine in community dwelling elderly people: a meta-analysis of test-negative design case-control studies

Influenza activity

Table 2: Results from the mixed-effects meta-regression model

	Vaccine match		Vaccine mismatch			
	OR (95% CI)	p value	OR (95% CI)	p value		
Non-epidemic seasons	0.65 (0.41-1.03)	0.0656	0.87 (0.57-1.32)	0.5043		
Sporadic activity	0.69 (0.48-0.99)	0.0489	0.92 (0.68-1.25)	0.5945		
Local activity	0.62 (0.28-1.36)	0.2126	0.83 (0.38-1.79)	0.6079		
Epidemic seasons	0.48 (0.39-0.59)	<0.0001	0.64 (0.52-0.78)	0.0004		
Regional outbreaks	0.42 (0.30-0.60)	0.0002	0.57 (0.41-0.79)	0.0029		
Widespread outbreaks	0.54 (0.46-0.62)	<0.0001	0.72 (0.60-0.85)	0.0015		
OR=odds ratio.						


Lancet Infect Dis 2014;14: 1228-39

High dose vs low dose TIV (>65 y.) Effect against laboratory proven influenza

□ HD VE + 25 % vs LD TIV

	Experime	ental	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
DiazGranados 2013	14	6107	8	3051	3.7%	0.87 [0.37, 2.08]	
DiazGranados 2014, Y1	23	7253	42	7244	10.9%	0.55 [0.33, 0.91]	<u> </u>
DiazGranados 2014, Y2	205	8737	259	8749	85.4%	0.79 [0.66, 0.95]	=
Total (95% CI)		22097		19044	100.0%	0.76 [0.65, 0.90]	•
Total events	242		309				
Heterogeneity: Tau ² = 0.00); Chi ² = 1.9	92, df =	2 (P = 0.3)	38); I² =	0%		04 02 05 4 2 5 40
Test for overall effect: Z =	3.16 (P = 0)	0.002)					0.1 0.2 0.5 1 2 5 10 Favours high-dose Favours standard dose

MF-59 udjuvated TIV vaccine effect

Vaccine. 2017 Jan 23;35(4):513-520

OR

Pneumococcal vaccination,

Belgium

TARGET GROUPS:

February 2015

Adults with high risk for PD

- Immunocompromise
- Asplenia (anatomic or functional)
- Sickle-cell disease and hemoglobinopathia
- CSF leakage or cochlear implant

Adults with comorbidity

- Chronic heart disease
- Chronic lung disease
- Chronic liver disease or ethylism
- Chronic kidney disease

federale overheidsdiens

/OLKSGEZONDHEID, VEILIGHEID VAN DE VOEDSELKETEN EN LEEFMILIEU

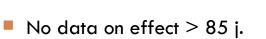
Pneumococcal vaccination,

Belgium

February 2015

Adults 19-85 y. with high risk for PD

- Primo-vaccination: PCV13 ²³ PPV23 after 8w
- Previously vaccinated with PPV23: PCV13 once ≥ 1 j. after last PPV23
- Revaccination: PPV23 every 5 y.


Adults 50-85 y. with comorbidity Healthy adults 65-85 y.

- Primo-vaccination: PCV13 ²³ PPV23 after 8w
- Previously vaccinated with PPV23: PCV13 once ≥
- **(Booster: ?** Depends on epidmiologie over 5 y. and

Hoge Gezondheidsraad

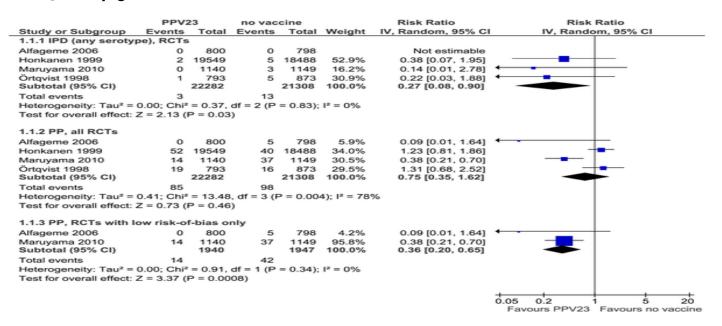
Adults > 85 y.

Evidence: controversies PPV23

Authors' conclusions

- This meta-analysis provides evidence supporting the recommendation for PPV to prevent IPD in adults. The evidence from RCTs is less clear with respect to adults with chronic illness. This might be because of lack of effect or lack of power in the studies. The meta-analysis does not provide evidence to support the routine use of PPV to prevent all-cause pneumonia or mortality.
- DOI: 10.1002/14651858.CD000422.pub3

PPV23 vaccination in COPD patients


- Effect of pneumococcal vaccination
 - COPD exacerbation prevention: 47% VE (CI:19-56%)
 - CAP prevention: 48% VE (CI:11-57%)
 - No effect
 - Mortality
 - Hospital admission

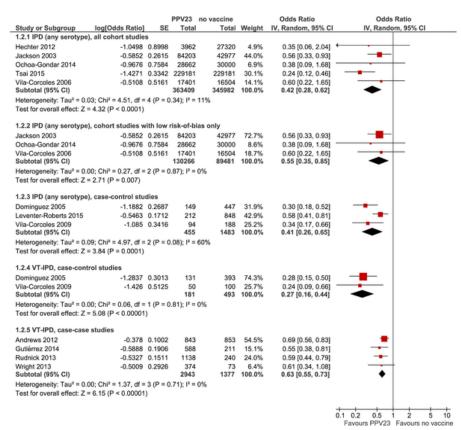
PPV23 effect on IPD and PP in

elderly

PCPP 73 % VE

□ PP: 64 % VE

Falkenhorst G, Remschmidt C, Harder T, Hummers-Pradier E, Wichmann O, et al. (2017) Effectiveness of the 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23) against Pneumococcal Disease in the Elderly: Systematic Review and Meta-Analysis. PLOS ONE 12(1): e0169368. https://doi.org/10.1371/journal.pone.0169368


TENTH ANNIVERSARY

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169368

PPV23 effect on IPD in elderly

Observational studies

- IPD
 - Cohort studies: VE: 45 %
 - Case control: VE 59 %
- VT-IPD
 - Case control: VE 73 %
 - Case case: VE 37 %

Falkenhorst G, Remschmidt C, Harder T, Hummers-Pradier E, Wichmann O, et al. (2017) Effectiveness of the 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23) against Pneumococcal Disease in the Elderly: Systematic Review and Meta-Analysis. PLOS ONE 12(1): e0169368.

https://doi.org/10.1371/journal.pone.0169368

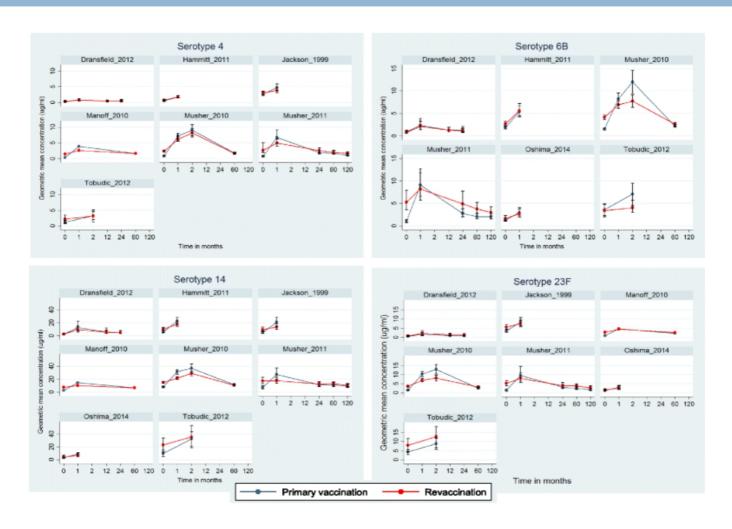
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169368

PPV23 effect on PP in elderly

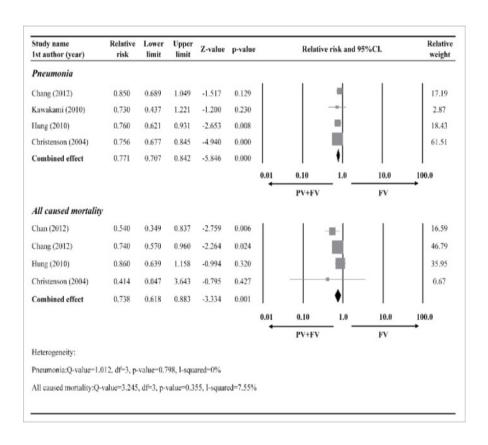
Observational studies

- Cohort studies: VE: 48 %
- Case control: VE 53 %

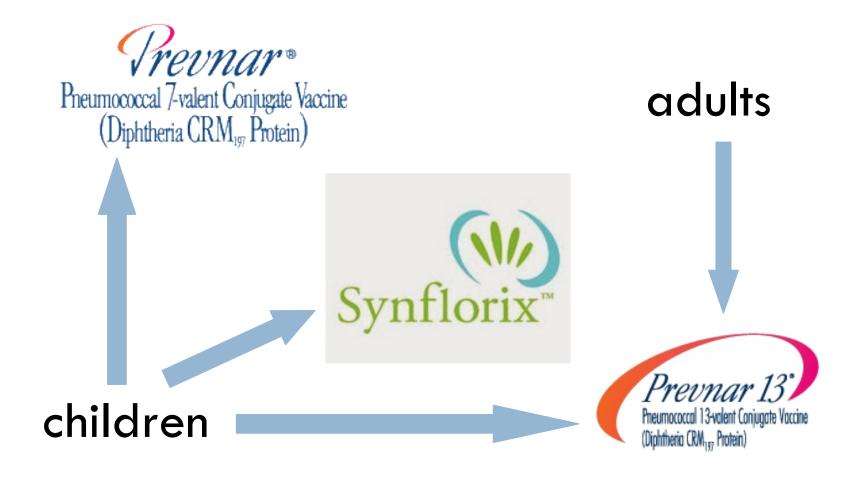
Case case	3E	3 %	BBV22 .	no vaccine		Odds Ratio	Odds Ratio
	dds Ratio]		Total		Weight	IV, Random, 95% CI	
Study or Subgroup log[O 1.3.1 PP, cohort studies	dus Ratioj	3E	rotai	rotai	weight	IV, Random, 95% Ci	IV, Random, 95% CI
Ochoa-Gondar 2014	-0.7133	0.275	28662	30000	43.2%	0.49 [0.29, 0.84]	
Vila-Corcoles 2006	-0.5978		17401	16504	56.8%	0.55 [0.34, 0.88]	
Subtotal (95% CI)	-0.5576	0.2330	46063	46504	100.0%	0.52 [0.37, 0.75]	- ■
Heterogeneity: Tau2 = 0.00; Cl	$hi^2 = 0.10, d$	f = 1 (P =	0.75); I ²	= 0%			
Test for overall effect: Z = 3.58							
1.3.2 PP, case-control studie	es						
Vila-Corcoles 2009	-0.7636	0.1853	102	271	100.0%	0.47 [0.32, 0.67]	
Subtotal (95% CI)			102	271	100.0%	0.47 [0.32, 0.67]	◆
Heterogeneity: Not applicable							
Test for overall effect: Z = 4.12	2 (P < 0.000	1)					
1.3.3 PP, case-case-study							
Wiemken 2014	-0.462	0.1717	279	2409	100.0%	0.63 [0.45, 0.88]	
Subtotal (95% CI)			279	2409	100.0%	0.63 [0.45, 0.88]	
Heterogeneity: Not applicable							
Test for overall effect: Z = 2.69	9 (P = 0.007))					
							0.1 0.2 0.5 1 2 5 10
							Favours PPV23 Favours no vaccin


Falkenhorst G, Remschmidt C, Harder T, Hummers-Pradier E, Wichmann O, et al. (2017) Effectiveness of the 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23) against Pneumococcal Disease in the Elderly: Systematic Review and Meta-Analysis. PLOS ONE 12(1): e0169368.

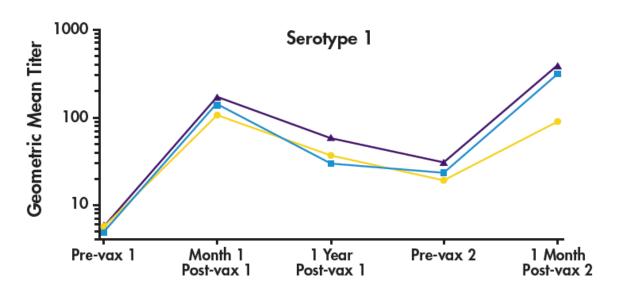
https://doi.org/10.1371/journal.pone.0169368


http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169368

Effectiveness, immunogenicity and safety of PPV23 revaccinations in the elderly: a systematic review.



Effect TIV + PPV vaccination

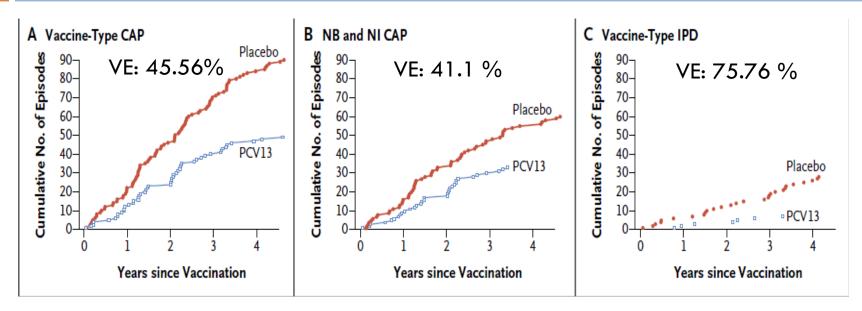

- □ TIV + PPV23
 - Pneumonia VE: + 23 %
 - Mortality VE: + 26 %

PCV7, PCV10, PCV13

PCV13 in adults

- Immunogenicity PCV13
 - $\square \ge PPV23$ in PPV naive 60-65 y.
 - $\square \ge PPV23$ in PPV prevaccinated ≥ 70 y.
 - □ No immunatalerane hoosting

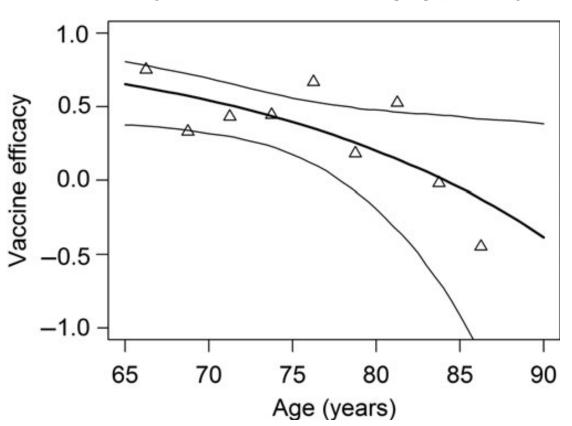
- ▲ PCV13/PPSV23
- PCV13/PCV13
- PPSV23/PPSV23


PCV13 in adults

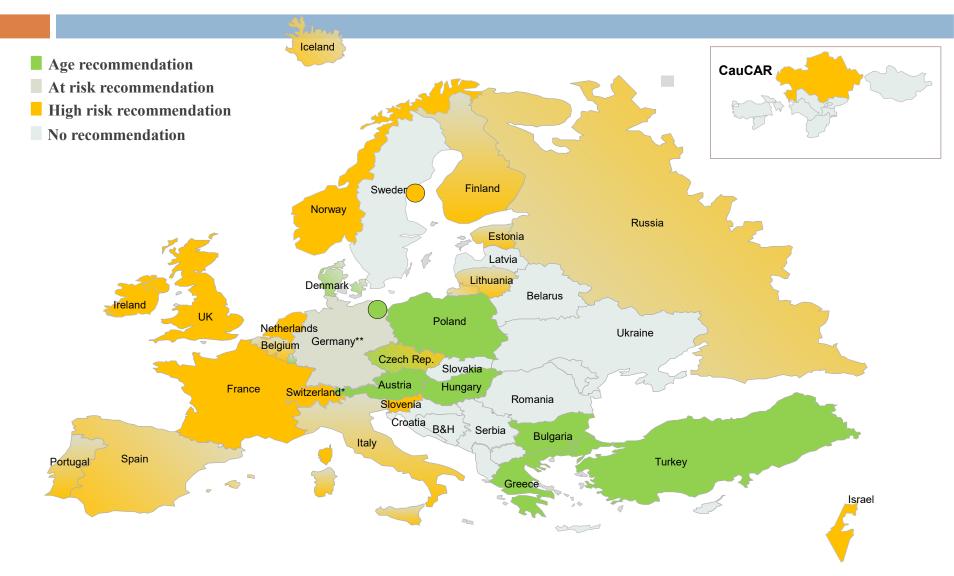
CAPITA

	PCV13	Placebo	Total
Number	42,237	42,255	84,492
Male	55.5 %	56.3 %	55.9 %
Age, mean (SD)	72.8	72.8	72.8
Age groups			
< 75 y	68.7 %	68.8 %	68.7 %
75 – 84 y	27.8 %	27.8 %	27.8 %
≥ 85 y	3.6 %	3.4 %	3.5 %
Comorbid disease*	42.3 %	42.4 %	42.3 %

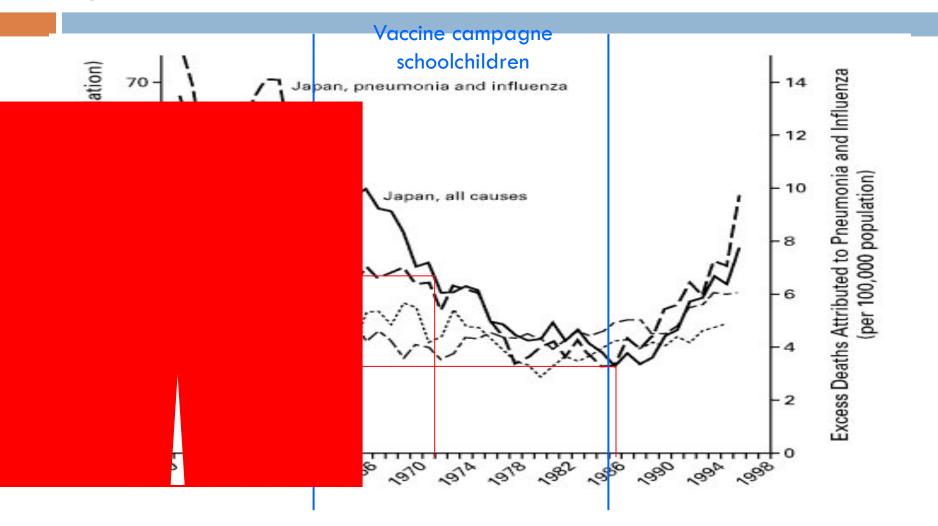
st: asthma, Diabetes, Splenectomy Heart, Lung, or Liver disease.


PCV13 in adults: CAPITA

	VE %	95 % CI	Р
VT CAP (PP)			
Total	45.56	21.82 - 62.49	< 0.001
Age groups			
< 75 y	52.54	24.09 - 70.99	0.001
75 – 84 y	46.43	-4.33 – 73.57	0.07
≥ 85 y	-100	-1156.63 - 57.78	0.51


PCV13 vaccine efficacy and age

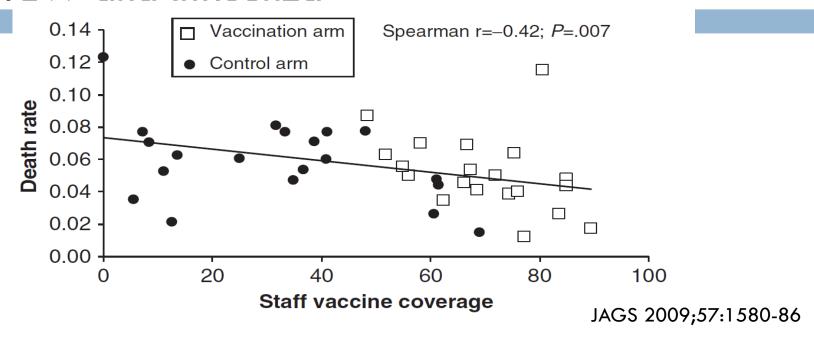
Model derived vaccine efficacy (VT-CAP-IPD in mITT population)


DOI: 10.1093/cid/civ686

European National Recommendations for Prevenar13 in Adults

Herd vaccination strategy

Herd vaccination strategy: Children and Influenza


Indirect protective effect

TIV

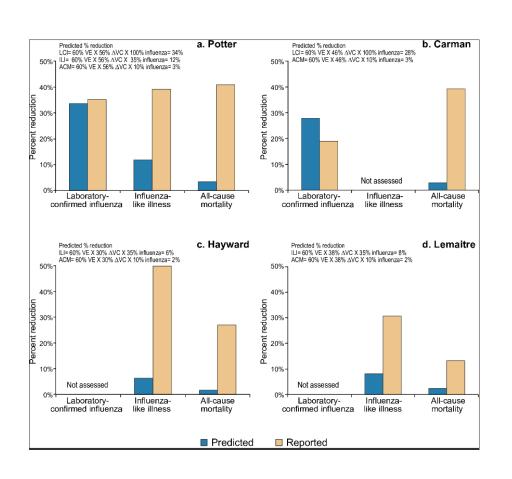
	Vaccina	ation	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.1.1 IPE to the community f	from vacci	nating s	school-ag	ge childr	en		
LCI Leob2010 (IIV3-15y)	39	1271	80	1055	10.1%	0.40 [0.28, 0.59]	<u> </u>
Subtotal (95% CI)		1271		1055	10.1%	0.40 [0.28, 0.59]	◆ IPE=60%
Total events	39		80				(95% CI, 41-72%)
Heterogeneity: Not applicabl							,
Test for overall effect: Z = 4.7	4 (P < 0.00	1001)					
1.1.2 IPE to household mem	bers from	vaccin	ating sch	nool-age	children		
LI King2006 (LAIV5-14y)	253	3022	710	5488	26.5%	0.65 [0.56, 0.74]	•
ARTI King2006 (LAIV5-14y)	979	3022	2439	5488	33.2%	0.73 [0.69, 0.77]	•
LCI Clover1991 (IIV2-18y)	11	60	16	68	3.8%	0.78 [0.39, 1.55]	+
LCI Clover1991(LAIV2-18y)	11	49	16	68	3.9%	0.95 [0.49, 1.87]	_
LCI Cowling2010(IIV6-15y)	6	189	2	123	0.8%	1.95 [0.40, 9.52]	IDE-200/
Subtotal (95% CI)		6342		11235	68.2%	0.71 [0.65, 0.78]	IPE=29%
Total events	1260		3183				(95% CI, 22-35%
Heterogeneity: Tau² = 0.00; (P = 0.31)	; I ² = 169	6		P
Test for overall effect: Z = 7.6	1 (P < 0.00	1001)					
1.1.3 IPE to household mem	bers from	vaccin	ating pre	-school	children		
ARTI Princi2003(IIV6m-5y)	3	728	4	370	0.9%	0.38 [0.09, 1.69]	
LI Hurwitz2000(IIV2-5y)	11	113	21	115	3.8%	0.53 [0.27, 1.05]	
ARTI Espos2003(IIV6m-9y)	2	176	3	173	0.6%	0.66 [0.11, 3.87]	
ARTI Hurwitz2000(IIV2-5y)	53	113	64	115	16.4%	0.84 [0.65, 1.09]	■ IPE=22%
Subtotal (95% CI)		1130		773	21.7%	0.78 [0.62, 0.99]	V = . =
Total events	69		92				(95% CI, 1-38%)
Heterogeneity: Tau² = 0.00; (P = 0.45)	; ² = 0%			
Test for overall effect: Z = 2.0	9 (P = 0.04)					IDE -000/
Total (95% CI)		8743		13063	100.0%	0.68 [0.59, 0.79]	♦ IPE=32% (95% CI, 21-41%
Total events	1368		3355				(95% 61, 21-41%
Heterogeneity: Tau ² = 0.01; (Chi² = 16.8	9, df = 9	(P = 0.05)	5); 2 = 47	'%		0.01 0.1 1 10 11
							0.01 0.1 1 10 11
Test for overall effect: Z = 5.3	0 (P < 0.00)	1001)					Favours [vaccination] Favours [control]

- School-age children
 - Community: VE 60 %
 - Household: VE 32 %
- Preschool children
 - Household: VE 22 %
- Total: VE 32 %

Herd vaccination strategy: HCW and Influenza

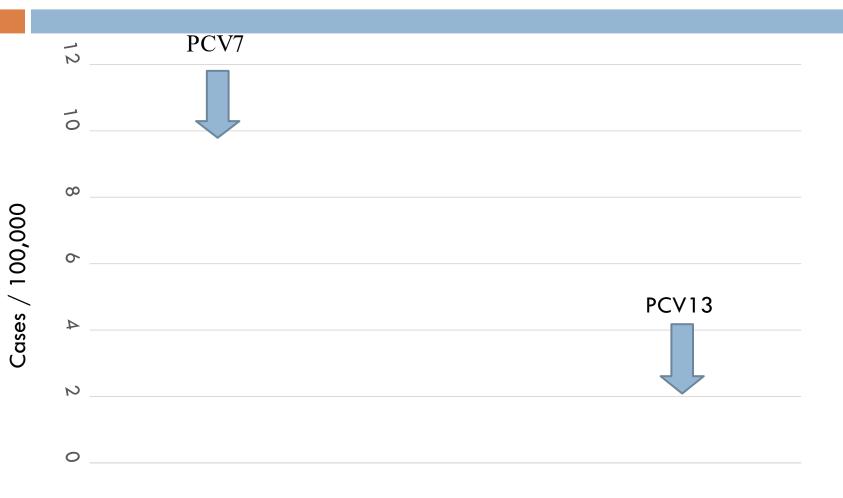
TIV vaccinated Health Care Workers Belgium

38.6 % (95 % CI: 26,4 – 44,4)

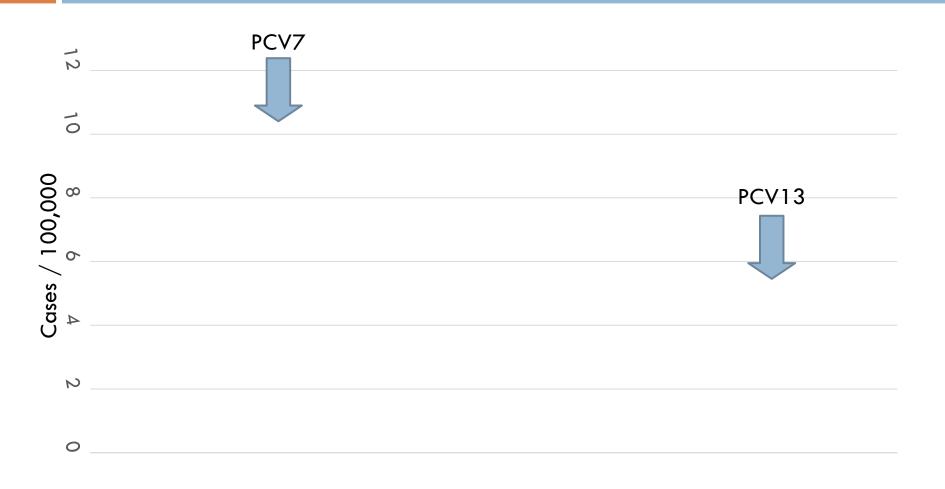

Controversies: Herd vaccination strategy for HCW

and Inf	te mza	Residents	Remark
Carman 2000	50.9 vs 4.9 %	Mortality↓ Influenza =	Necropsy PCR influenza↓
Hayward 2006	48.2 vs 5.9 %	Mortality↓ ILI↓ Physician visits↓ Hospialisation↓	In moderate, not in low influenza season
Oshitani 2000	Vaccine coverage↑	ILI attack rate↓	Resident coverage↑ (80 %)
Potter 1997	61 %	Mortality↓ ILI↓	No mortality↓ by resident vaccination
Lemaitre 2000	69.9 vs 31.8 %	Mortality↓ ILI↓ Hospitalisation =	Sick leave HCW↓

Influenza and complications in residents =



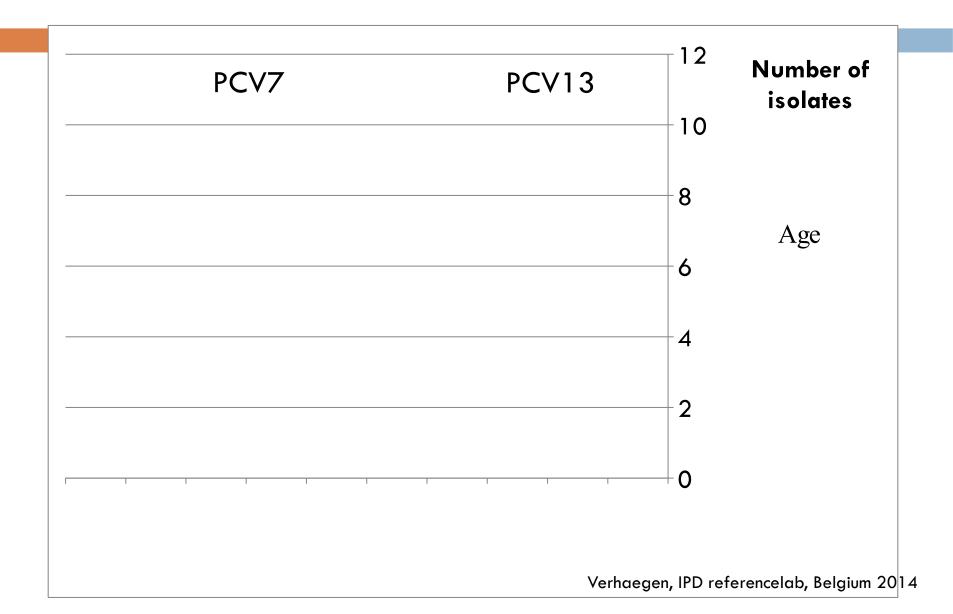
Influenza Vaccination of Healthcare Workers: Critical Analysis of the Evidence for Patient Benefit Underpinning Policies of Enforcement.



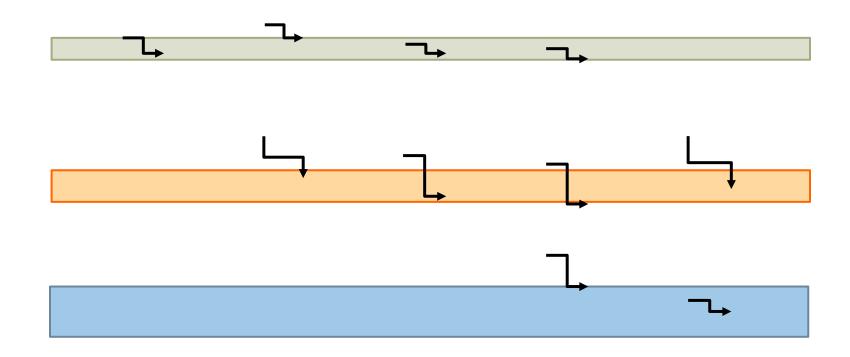
- Overreporting of reduction of influenza and mortality
- Persisting low evidence
- Voluntary TIV HCW

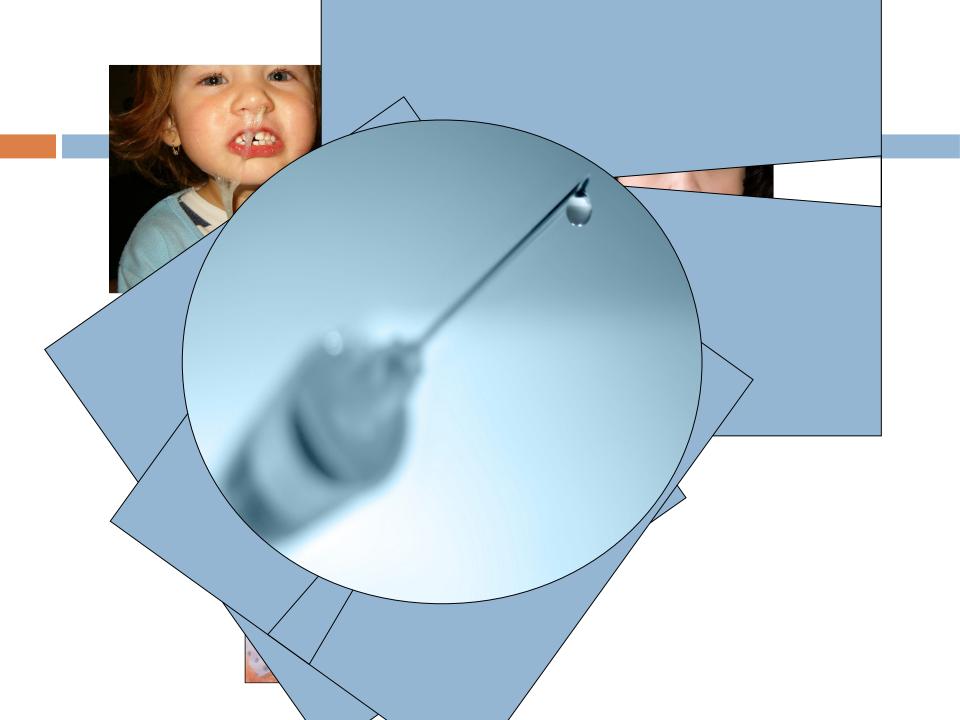
IPD cases USA 1997 - 2013

IPD mortality USA 1997 - 2013

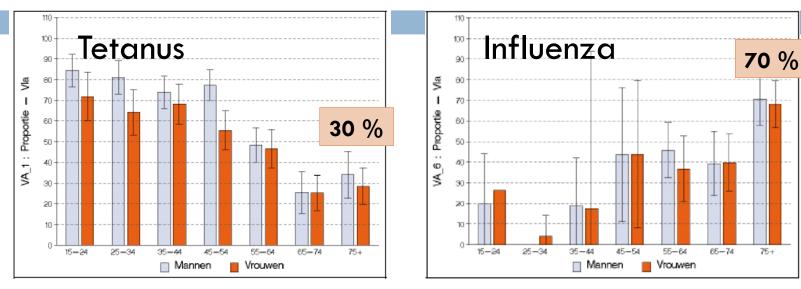

IPD mortality USA

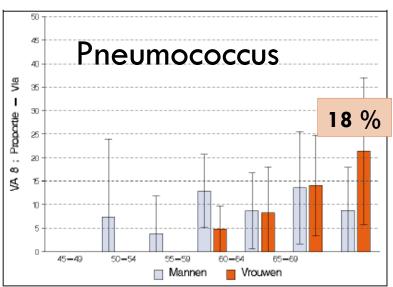
——— IPD 1997


_____ IPD 2012


Herd protection against IPD

SG coverage pneumococcal vaccines, Belgium 2008-2014

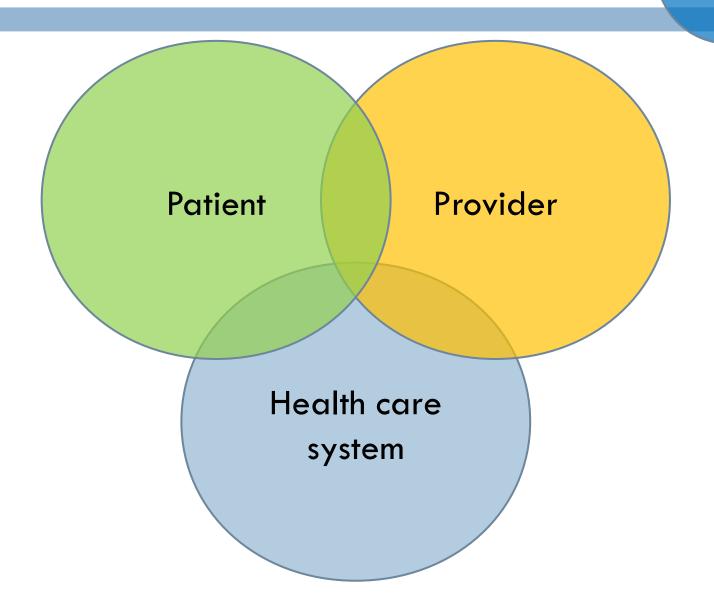

$$65 - 84 \text{ y.} \ge 85 \text{ y.}$$
 Total



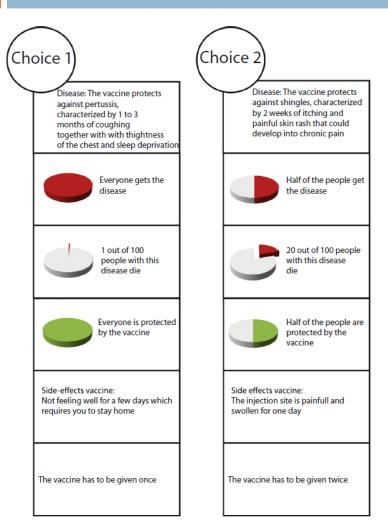
Vaccination strategies in older persons

- Prevent/treat (pre)-frailty and comorbidities
- Vaccinate with most immunogenic vaccines
- Boost
- Vaccinate older (fit) adults
- Vaccinate (grand)(grand)children and contacts
- Vaccinate HCW

Vaccine uptake in Belgium



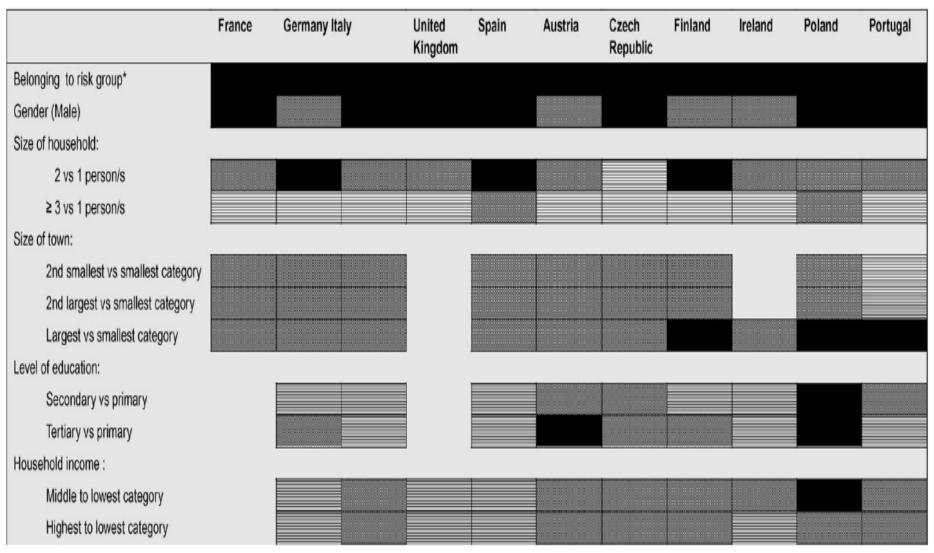
Gezondheidsenquête 2008


How to reach older persons?

HOW?

Vaccine preferences and acceptance of older adults

Table 5



- 11 % opt out (no vaccination)
- Factors influencing choice
 - Mortality of disease
 - Susceptibility to disease

The value and estimat pertussis vaccine.	ed vaccination rates for the i	influenza, pneumococcal dis	sease, herpes zoster and		
Vaccine ^a	Study population groups				
	50 years and older (n = 610)	50-65 years (n = 290)	65 years and older (n = 320)		
	Estimated vaccination rate (%)	Estimated vaccination rate (%)	Estimated vaccination rate (%)		
Pneumococcal disease	68.1	58.1	76.2		
Herpes Zoster	58.1	49.5	67.5		
Pertussis	53.9	43.8	57.5		
Influenza	54.3	42.2	65.5		

Fig. 1. Example of two scenarios from which respondents had to choose the preferred one.

Socioeconomic factors and TIV

^{*}Includes persons aged ≥65 years, or suffering of chronic illness, or working in medical field

[■] Positive predictor; ■ negative predictor; ■ factor with no significant odds ratio; □ not applicable.

TIV vaccination strategies

Community dwelling > 60 y

- □ Demand ↑
 - Reminders to patients
 - Reminder postcard/letter
 - Personalised postcard/letter
 - Leaflet + letter > leaflet
 - Phone call (senior) > invitation in clinic
 - Education of patients
 - Risk appraisal

Patient

Not vaccinated?

Table 4 Main reasons for not being vaccinated.							
Study		Lack of recommendation	Absence of risk perception	Disbelief in efficacy	Fear of side effects	Costs	
			(%)	(%)	(%)	(%)	
1	IV		16	17.5	17.5	11	
2	IV	2.3%	19.6	19.3	11.2		
3	PV			21	18	8	
6	IV	41%	66	13	21		
7	IV	14.7%	19.9	12.5	8.1		
8	PV	55.2%	14.5	4.8	1.6		
9 ('00)	IV		15.4	13.1	26.9		
9 (′01)	IV		12.1	12.9	23.8		
10	IV	36.6%	43.6	27.7			
11	IV/PV			20/19			
12 ^a	IV	52%/63% W/E	79				
13	IV/PV	34%	22		14		
14	IV	56.2%	37.6	59.8			

IV = influenza vaccination, PV = pneumococcal vaccination, W = former West Germany, E = former East Germany. a Target groups: including the elderly (\geqslant 60), chronically ill, health care professionals.

TIV Vaccination Strategies

Community dwelling > 60 y

□ Provider

Provider

- Reminders to Dr.
 - Reminder of all patients > half of the patients
 - (Competitive uptake poster + postcards)

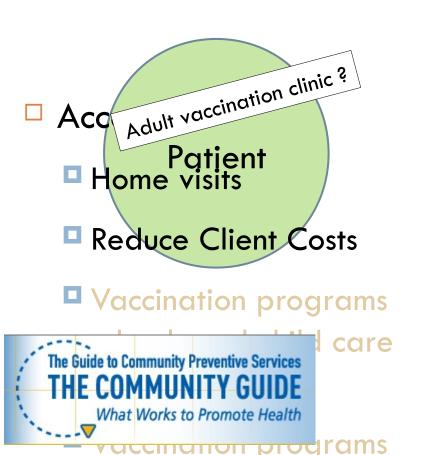
- Facillitators of vaccination in practice
- Number of providers: vaccination clinics
- Facility: prompts, computerized reminder system

TIV vaccination strategies Community dwelling > 60

- Societal interventions
 - No RCTs
 - Recommendations
 - Age based > risk based strategy

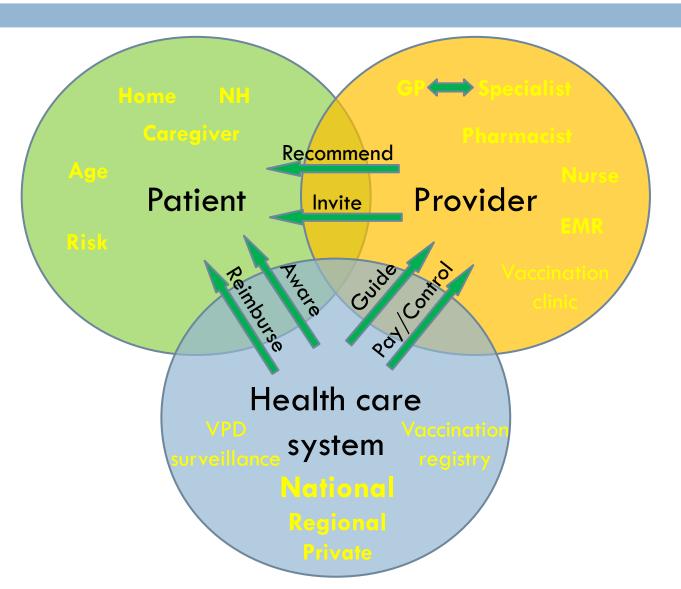
- Quality and Outcome framework (UK): physician payment for targeted quality care
- Clinical governance (NHS) contract + payment

system


Trusted evidence. Informed decisions. Better health.

DOI: 10.1002/14651858.CD005188.pub3

Health insurance coverage


Enhancing Access to Vaccination Services

Client-based interventions

Provider & HCS-based interventions Health Provider care **Immunization** system Reminders Assessment and feedback (+ incentives, benchmarking Standing orders Clinics

Multicomponent interventions to improve vaccine uptake

